Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCuAsmRL: Optimizing GPU SASS Schedules via Deep Reinforcement Learning
Large language models (LLMs) are remarked by their substantial computational requirements. To mitigate the cost, researchers develop specialized CUDA kernels, which often fuse several tensor operations to maximize the utilization of GPUs as much as possible. However, those specialized kernels may still leave performance on the table as CUDA assembly experts show that manual optimization of GPU SASS schedules can lead to better performance, and trial-and-error is largely employed to manually find the best GPU SASS schedules. In this work, we employ an automatic approach to optimize GPU SASS schedules, which thus can be integrated into existing compiler frameworks. The key to automatic optimization is training an RL agent to mimic how human experts perform manual scheduling. To this end, we formulate an assembly game, where RL agents can play to find the best GPU SASS schedules. The assembly game starts from a -O3 optimized SASS schedule, and the RL agents can iteratively apply actions to mutate the current schedules. Positive rewards are generated if the mutated schedules get higher throughput by executing on GPUs. Experiments show that CuAsmRL can further improve the performance of existing specialized CUDA kernels transparently by up to 26%, and on average 9%. Moreover, it is used as a tool to reveal potential optimization moves learned automatically.
RankAdaptor: Hierarchical Dynamic Low-Rank Adaptation for Structural Pruned LLMs
The efficient compression of large language models (LLMs) is becoming increasingly popular. However, recovering the accuracy of compressed LLMs is still a major challenge. Structural pruning with standard Low-Rank Adaptation (LoRA) is a common technique in current LLM compression. In structural pruning, the model architecture is modified unevenly, resulting in suboptimal performance in various downstream tasks via standard LoRA with fixed rank. To address this problem, we introduce RankAdaptor, an efficient fine-tuning method with hierarchical dynamic rank scheduling for pruned LLMs. An end-to-end automatic optimization flow is developed that utilizes a lightweight performance model to determine the different ranks during fine-tuning. Comprehensive experiments on popular benchmarks show that RankAdaptor consistently outperforms standard LoRA with structural pruning over different pruning settings. Without increasing the trainable parameters, RankAdaptor further reduces the accuracy performance gap between the recovery of the pruned model and the original model compared to standard LoRA.
Lingua Manga: A Generic Large Language Model Centric System for Data Curation
Data curation is a wide-ranging area which contains many critical but time-consuming data processing tasks. However, the diversity of such tasks makes it challenging to develop a general-purpose data curation system. To address this issue, we present Lingua Manga, a user-friendly and versatile system that utilizes pre-trained large language models. Lingua Manga offers automatic optimization for achieving high performance and label efficiency while facilitating flexible and rapid development. Through three example applications with distinct objectives and users of varying levels of technical proficiency, we demonstrate that Lingua Manga can effectively assist both skilled programmers and low-code or even no-code users in addressing data curation challenges.
Where to Diffuse, How to Diffuse, and How to Get Back: Automated Learning for Multivariate Diffusions
Diffusion-based generative models (DBGMs) perturb data to a target noise distribution and reverse this process to generate samples. The choice of noising process, or inference diffusion process, affects both likelihoods and sample quality. For example, extending the inference process with auxiliary variables leads to improved sample quality. While there are many such multivariate diffusions to explore, each new one requires significant model-specific analysis, hindering rapid prototyping and evaluation. In this work, we study Multivariate Diffusion Models (MDMs). For any number of auxiliary variables, we provide a recipe for maximizing a lower-bound on the MDMs likelihood without requiring any model-specific analysis. We then demonstrate how to parameterize the diffusion for a specified target noise distribution; these two points together enable optimizing the inference diffusion process. Optimizing the diffusion expands easy experimentation from just a few well-known processes to an automatic search over all linear diffusions. To demonstrate these ideas, we introduce two new specific diffusions as well as learn a diffusion process on the MNIST, CIFAR10, and ImageNet32 datasets. We show learned MDMs match or surpass bits-per-dims (BPDs) relative to fixed choices of diffusions for a given dataset and model architecture.
PerfDojo: Automated ML Library Generation for Heterogeneous Architectures
The increasing complexity of machine learning models and the proliferation of diverse hardware architectures (CPUs, GPUs, accelerators) make achieving optimal performance a significant challenge. Heterogeneity in instruction sets, specialized kernel requirements for different data types and model features (e.g., sparsity, quantization), and architecture-specific optimizations complicate performance tuning. Manual optimization is resource-intensive, while existing automatic approaches often rely on complex hardware-specific heuristics and uninterpretable intermediate representations, hindering performance portability. We introduce PerfLLM, a novel automatic optimization methodology leveraging Large Language Models (LLMs) and Reinforcement Learning (RL). Central to this is PerfDojo, an environment framing optimization as an RL game using a human-readable, mathematically-inspired code representation that guarantees semantic validity through transformations. This allows effective optimization without prior hardware knowledge, facilitating both human analysis and RL agent training. We demonstrate PerfLLM's ability to achieve significant performance gains across diverse CPU (x86, Arm, RISC-V) and GPU architectures.
TRIPS: Trilinear Point Splatting for Real-Time Radiance Field Rendering
Point-based radiance field rendering has demonstrated impressive results for novel view synthesis, offering a compelling blend of rendering quality and computational efficiency. However, also latest approaches in this domain are not without their shortcomings. 3D Gaussian Splatting [Kerbl and Kopanas et al. 2023] struggles when tasked with rendering highly detailed scenes, due to blurring and cloudy artifacts. On the other hand, ADOP [R\"uckert et al. 2022] can accommodate crisper images, but the neural reconstruction network decreases performance, it grapples with temporal instability and it is unable to effectively address large gaps in the point cloud. In this paper, we present TRIPS (Trilinear Point Splatting), an approach that combines ideas from both Gaussian Splatting and ADOP. The fundamental concept behind our novel technique involves rasterizing points into a screen-space image pyramid, with the selection of the pyramid layer determined by the projected point size. This approach allows rendering arbitrarily large points using a single trilinear write. A lightweight neural network is then used to reconstruct a hole-free image including detail beyond splat resolution. Importantly, our render pipeline is entirely differentiable, allowing for automatic optimization of both point sizes and positions. Our evaluation demonstrate that TRIPS surpasses existing state-of-the-art methods in terms of rendering quality while maintaining a real-time frame rate of 60 frames per second on readily available hardware. This performance extends to challenging scenarios, such as scenes featuring intricate geometry, expansive landscapes, and auto-exposed footage.
HPCTransCompile: An AI Compiler Generated Dataset for High-Performance CUDA Transpilation and LLM Preliminary Exploration
The rapid growth of deep learning has driven exponential increases in model parameters and computational demands. NVIDIA GPUs and their CUDA-based software ecosystem provide robust support for parallel computing, significantly alleviating computational bottlenecks. Meanwhile, due to the cultivation of user programming habits and the high performance of GPUs, the CUDA ecosystem has established a dominant position in the field of parallel software. This dominance requires other hardware platforms to support CUDA-based software with performance portability. However, translating CUDA code to other platforms poses significant challenges due to differences in parallel programming paradigms and hardware architectures. Existing approaches rely on language extensions, domain-specific languages (DSLs), or compilers but face limitations in workload coverage and generalizability. Moreover, these methods often incur substantial development costs. Recently, LLMs have demonstrated extraordinary potential in various vertical domains, especially in code-related tasks. However, the performance of existing LLMs in CUDA transpilation, particularly for high-performance code, remains suboptimal. To address these challenges, we propose a novel framework for generating high-performance CUDA and corresponding platform code pairs, leveraging AI compiler and automatic optimization technology. We further enhance the framework with a graph-based data augmentation method and introduce HPCTransEval, a benchmark for evaluating LLM performance on CUDA transpilation. We conduct experiments using CUDA-to-CPU transpilation as a case study on leading LLMs. The speedup ratio of the CPU operators has an average improvemnet of 43.8\%, highlighting the potential of LLMs to address compatibility challenges within the CUDA ecosystem. Our code is available at https://github.com/PJLAB-CHIP/HPCTransCompile.
OrderChain: Towards General Instruct-Tuning for Stimulating the Ordinal Understanding Ability of MLLM
Despite the remarkable progress of multimodal large language models (MLLMs), they continue to face challenges in achieving competitive performance on ordinal regression (OR; a.k.a. ordinal classification). To address this issue, this paper presents OrderChain, a novel and general prompting paradigm that improves the ordinal understanding ability of MLLMs by specificity and commonality modeling. Specifically, our OrderChain consists of a set of task-aware prompts to facilitate the specificity modeling of diverse OR tasks and a new range optimization Chain-of-Thought (RO-CoT), which learns a commonality way of thinking about OR tasks by uniformly decomposing them into multiple small-range optimization subtasks. Further, we propose a category recursive division (CRD) method to generate instruction candidate category prompts to support RO-CoT automatic optimization. Comprehensive experiments show that LLaVA model with our OrderChain improves baseline LLaVA significantly on diverse OR datasets, e.g., from 47.5\% to 93.2\% accuracy on the Adience dataset for age estimation, and from 30.0\% to 85.7\% accuracy on the Diabetic Retinopathy dataset. Notably, LLaVA with our OrderChain also remarkably outperforms state-of-the-art methods by 27% on accuracy and 0.24 on MAE on the Adience dataset. To our best knowledge, our OrderChain is the first work that augments MLLMs for OR tasks, and the effectiveness is witnessed across a spectrum of OR datasets. Project Page: https://order-chain.github.io/.
Automatic Prompt Optimization with Prompt Distillation
Autoprompting is the process of automatically selecting optimized prompts for language models, which is gaining popularity due to the rapid development of prompt engineering driven by extensive research in the field of large language models (LLMs). This paper presents DistillPrompt -- a novel autoprompting method based on large language models that employs a multi-stage integration of task-specific information into prompts using training data. DistillPrompt utilizes distillation, compression, and aggregation operations to explore the prompt space more thoroughly. The method was tested on different datasets for text classification and generation tasks using the t-lite-instruct-0.1 language model. The results demonstrate a significant average improvement (e.g., 20.12% across the entire dataset compared to Grips) in key metrics over existing methods in the field, establishing DistillPrompt as one of the most effective non-gradient approaches in autoprompting.
Automatic Prompt Optimization with "Gradient Descent" and Beam Search
Large Language Models (LLMs) have shown impressive performance as general purpose agents, but their abilities remain highly dependent on prompts which are hand written with onerous trial-and-error effort. We propose a simple and nonparametric solution to this problem, Automatic Prompt Optimization (APO), which is inspired by numerical gradient descent to automatically improve prompts, assuming access to training data and an LLM API. The algorithm uses minibatches of data to form natural language ``gradients'' that criticize the current prompt. The gradients are then ``propagated'' into the prompt by editing the prompt in the opposite semantic direction of the gradient. These gradient descent steps are guided by a beam search and bandit selection procedure which significantly improves algorithmic efficiency. Preliminary results across three benchmark NLP tasks and the novel problem of LLM jailbreak detection suggest that Automatic Prompt Optimization can outperform prior prompt editing techniques and improve an initial prompt's performance by up to 31\%, by using data to rewrite vague task descriptions into more precise annotation instructions.
Teach Better or Show Smarter? On Instructions and Exemplars in Automatic Prompt Optimization
Large language models have demonstrated remarkable capabilities, but their performance is heavily reliant on effective prompt engineering. Automatic prompt optimization (APO) methods are designed to automate this and can be broadly categorized into those targeting instructions (instruction optimization, IO) vs. those targeting exemplars (exemplar selection, ES). Despite their shared objective, these have evolved rather independently, with IO recently receiving more research attention. This paper seeks to bridge this gap by comprehensively comparing the performance of representative IO and ES techniques, both isolation and combination, on a diverse set of challenging tasks. Our findings reveal that intelligently reusing model-generated input-output pairs obtained from evaluating prompts on the validation set as exemplars consistently improves performance over IO methods but is currently under-investigated. We also find that despite the recent focus on IO, how we select exemplars can outweigh how we optimize instructions, with ES strategies as simple as random search outperforming state-of-the-art IO methods with seed instructions without any optimization. Moreover, we observe synergy between ES and IO, with optimal combinations surpassing individual contributions. We conclude that studying exemplar selection as a standalone method and its optimal combination with instruction optimization remains a crucial aspect of APO and deserves greater consideration in future research, even in the era of highly capable instruction-following models.
Automatic Prompt Optimization Techniques: Exploring the Potential for Synthetic Data Generation
Artificial Intelligence (AI) advancement is heavily dependent on access to large-scale, high-quality training data. However, in specialized domains such as healthcare, data acquisition faces significant constraints due to privacy regulations, ethical considerations, and limited availability. While synthetic data generation offers a promising solution, conventional approaches typically require substantial real data for training generative models. The emergence of large-scale prompt-based models presents new opportunities for synthetic data generation without direct access to protected data. However, crafting effective prompts for domain-specific data generation remains challenging, and manual prompt engineering proves insufficient for achieving output with sufficient precision and authenticity. We review recent developments in automatic prompt optimization, following PRISMA guidelines. We analyze six peer-reviewed studies published between 2020 and 2024 that focus on automatic data-free prompt optimization methods. Our analysis reveals three approaches: feedback-driven, error-based, and control-theoretic. Although all approaches demonstrate promising capabilities in prompt refinement and adaptation, our findings suggest the need for an integrated framework that combines complementary optimization techniques to enhance synthetic data generation while minimizing manual intervention. We propose future research directions toward developing robust, iterative prompt optimization frameworks capable of improving the quality of synthetic data. This advancement can be particularly crucial for sensitive fields and in specialized domains where data access is restricted, potentially transforming how we approach synthetic data generation for AI development.
Automatic Instruction Optimization for Open-source LLM Instruction Tuning
Instruction tuning is crucial for enabling Language Learning Models (LLMs) in responding to human instructions. The quality of instruction pairs used for tuning greatly affects the performance of LLMs. However, the manual creation of high-quality instruction datasets is costly, leading to the adoption of automatic generation of instruction pairs by LLMs as a popular alternative in the training of open-source LLMs. To ensure the high quality of LLM-generated instruction datasets, several approaches have been proposed. Nevertheless, existing methods either compromise dataset integrity by filtering a large proportion of samples, or are unsuitable for industrial applications. In this paper, instead of discarding low-quality samples, we propose CoachLM, a novel approach to enhance the quality of instruction datasets through automatic revisions on samples in the dataset. CoachLM is trained from the samples revised by human experts and significantly increases the proportion of high-quality samples in the dataset from 17.7% to 78.9%. The effectiveness of CoachLM is further assessed on various real-world instruction test sets. The results show that CoachLM improves the instruction-following capabilities of the instruction-tuned LLM by an average of 29.9%, which even surpasses larger LLMs with nearly twice the number of parameters. Furthermore, CoachLM is successfully deployed in a data management system for LLMs at Huawei, resulting in an efficiency improvement of up to 20% in the cleaning of 40k real-world instruction pairs. We release the training data and code of CoachLM (https://github.com/lunyiliu/CoachLM).
APIO: Automatic Prompt Induction and Optimization for Grammatical Error Correction and Text Simplification
Recent advancements in large language models (LLMs) have enabled a wide range of natural language processing (NLP) tasks to be performed through simple prompt-based interactions. Consequently, several approaches have been proposed to engineer prompts that most effectively enable LLMs to perform a given task (e.g., chain-of-thought prompting). In settings with a well-defined metric to optimize model performance, automatic prompt optimization (APO) methods have been developed to refine a seed prompt. Advancing this line of research, we propose APIO, a simple but effective prompt induction and optimization approach for the tasks of Grammatical Error Correction (GEC) and Text Simplification, without relying on manually specified seed prompts. APIO achieves a new state-of-the-art performance for purely LLM-based prompting methods on these tasks. We make our data, code, prompts, and outputs publicly available.
AMPO: Automatic Multi-Branched Prompt Optimization
Prompt engineering is very important to enhance the performance of large language models (LLMs). When dealing with complex issues, prompt engineers tend to distill multiple patterns from examples and inject relevant solutions to optimize the prompts, achieving satisfying results. However, existing automatic prompt optimization techniques are only limited to producing single flow instructions, struggling with handling diverse patterns. In this paper, we present AMPO, an automatic prompt optimization method that can iteratively develop a multi-branched prompt using failure cases as feedback. Our goal is to explore a novel way of structuring prompts with multi-branches to better handle multiple patterns in complex tasks, for which we introduce three modules: Pattern Recognition, Branch Adjustment, and Branch Pruning. In experiments across five tasks, AMPO consistently achieves the best results. Additionally, our approach demonstrates significant optimization efficiency due to our adoption of a minimal search strategy.
Promptomatix: An Automatic Prompt Optimization Framework for Large Language Models
Large Language Models (LLMs) perform best with well-crafted prompts, yet prompt engineering remains manual, inconsistent, and inaccessible to non-experts. We introduce Promptomatix, an automatic prompt optimization framework that transforms natural language task descriptions into high-quality prompts without requiring manual tuning or domain expertise. Promptomatix supports both a lightweight meta-prompt-based optimizer and a DSPy-powered compiler, with modular design enabling future extension to more advanced frameworks. The system analyzes user intent, generates synthetic training data, selects prompting strategies, and refines prompts using cost-aware objectives. Evaluated across 5 task categories, Promptomatix achieves competitive or superior performance compared to existing libraries, while reducing prompt length and computational overhead making prompt optimization scalable and efficient.
ProAPO: Progressively Automatic Prompt Optimization for Visual Classification
Vision-language models (VLMs) have made significant progress in image classification by training with large-scale paired image-text data. Their performances largely depend on the prompt quality. While recent methods show that visual descriptions generated by large language models (LLMs) enhance the generalization of VLMs, class-specific prompts may be inaccurate or lack discrimination due to the hallucination in LLMs. In this paper, we aim to find visually discriminative prompts for fine-grained categories with minimal supervision and no human-in-the-loop. An evolution-based algorithm is proposed to progressively optimize language prompts from task-specific templates to class-specific descriptions. Unlike optimizing templates, the search space shows an explosion in class-specific candidate prompts. This increases prompt generation costs, iterative times, and the overfitting problem. To this end, we first introduce several simple yet effective edit-based and evolution-based operations to generate diverse candidate prompts by one-time query of LLMs. Then, two sampling strategies are proposed to find a better initial search point and reduce traversed categories, saving iteration costs. Moreover, we apply a novel fitness score with entropy constraints to mitigate overfitting. In a challenging one-shot image classification setting, our method outperforms existing textual prompt-based methods and improves LLM-generated description methods across 13 datasets. Meanwhile, we demonstrate that our optimal prompts improve adapter-based methods and transfer effectively across different backbones.
Robustness-aware Automatic Prompt Optimization
The performance of Large Language Models (LLMs) is based on the quality of the prompts and the semantic and structural integrity information of the input data. However, current prompt generation methods primarily focus on generating prompts for clean input data, often overlooking the impact of perturbed inputs on prompt performance. To address this limitation, we propose BATprompt (By Adversarial Training prompt), a novel method for prompt generation designed to withstand input perturbations (such as typos in the input). Inspired by adversarial training techniques, BATprompt demonstrates strong performance on a variety of perturbed tasks through a two-step process: adversarial perturbation and iterative optimization on unperturbed input via LLM. Unlike conventional adversarial attack methods, BATprompt avoids reliance on real gradients or model parameters. Instead, it leverages the advanced reasoning, language understanding and self reflection capabilities of LLMs to simulate gradients, guiding the generation of adversarial perturbations and optimizing prompt performance. In our experiments, we evaluate BATprompt on multiple datasets across both language understanding and generation tasks. The results indicate that BATprompt outperforms existing prompt generation methods, delivering superior robustness and performance under diverse perturbation scenarios.
Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning
The efficacy of large language models (LLMs) on downstream tasks usually hinges on instruction tuning, which relies critically on the quality of training data. Unfortunately, collecting high-quality and diverse data is both expensive and time-consuming. To mitigate this issue, we propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets through multi-agent collaboration and assessment. The framework adopts a three-pronged strategy. It initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method. Subsequently, the generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality. Finaly, the above process evolves in a dynamic refinement phase, where more effective LLMs are prioritized, enhancing the overall data quality. Our empirical studies, including instruction tuning experiments with models such as Pythia and LLaMA, demonstrate the effectiveness of the proposed framework. Optimized datasets have achieved substantial improvements, with an average increase of 12% and notable gains in specific metrics, such as a 40% improvement in Fermi, as evidenced by benchmarks like MT-bench, Vicuna bench, and WizardLM testset.
Improving Text-to-Image Consistency via Automatic Prompt Optimization
Impressive advances in text-to-image (T2I) generative models have yielded a plethora of high performing models which are able to generate aesthetically appealing, photorealistic images. Despite the progress, these models still struggle to produce images that are consistent with the input prompt, oftentimes failing to capture object quantities, relations and attributes properly. Existing solutions to improve prompt-image consistency suffer from the following challenges: (1) they oftentimes require model fine-tuning, (2) they only focus on nearby prompt samples, and (3) they are affected by unfavorable trade-offs among image quality, representation diversity, and prompt-image consistency. In this paper, we address these challenges and introduce a T2I optimization-by-prompting framework, OPT2I, which leverages a large language model (LLM) to improve prompt-image consistency in T2I models. Our framework starts from a user prompt and iteratively generates revised prompts with the goal of maximizing a consistency score. Our extensive validation on two datasets, MSCOCO and PartiPrompts, shows that OPT2I can boost the initial consistency score by up to 24.9% in terms of DSG score while preserving the FID and increasing the recall between generated and real data. Our work paves the way toward building more reliable and robust T2I systems by harnessing the power of LLMs.
Talk Less, Call Right: Enhancing Role-Play LLM Agents with Automatic Prompt Optimization and Role Prompting
This report investigates approaches for prompting a tool-augmented large language model (LLM) to act as a role-playing dialogue agent in the API track of the Commonsense Persona-grounded Dialogue Challenge (CPDC) 2025. In this setting, dialogue agents often produce overly long in-character responses (over-speaking) while failing to use tools effectively according to the persona (under-acting), such as generating function calls that do not exist or making unnecessary tool calls before answering. We explore four prompting approaches to address these issues: 1) basic role prompting, 2) improved role prompting, 3) automatic prompt optimization (APO), and 4) rule-based role prompting. The rule-based role prompting (RRP) approach achieved the best performance through two novel techniques-character-card/scene-contract design and strict enforcement of function calling-which led to an overall score of 0.571, improving on the zero-shot baseline score of 0.519. These findings demonstrate that RRP design can substantially improve the effectiveness and reliability of role-playing dialogue agents compared with more elaborate methods such as APO. To support future efforts in developing persona prompts, we are open-sourcing all of our best-performing prompts and the APO tool Source code is available at https://github.com/scb-10x/apo
ROAD: Reflective Optimization via Automated Debugging for Zero-Shot Agent Alignment
Automatic Prompt Optimization (APO) has emerged as a critical technique for enhancing Large Language Model (LLM) performance, yet current state-of-the-art methods typically rely on large, labeled gold-standard development sets to compute fitness scores for evolutionary or Reinforcement Learning (RL) approaches. In real-world software engineering, however, such curated datasets are rarely available during the initial cold start of agent development, where engineers instead face messy production logs and evolving failure modes. We present ROAD (Reflective Optimization via Automated Debugging), a novel framework that bypasses the need for refined datasets by treating optimization as a dynamic debugging investigation rather than a stochastic search. Unlike traditional mutation strategies, ROAD utilizes a specialized multi-agent architecture, comprising an Analyzer for root-cause analysis, an Optimizer for pattern aggregation, and a Coach for strategy integration, to convert unstructured failure logs into robust, structured Decision Tree Protocols. We evaluated ROAD across both a standardized academic benchmark and a live production Knowledge Management engine. Experimental results demonstrate that ROAD is highly sample-efficient, achieving a 5.6 percent increase in success rate (73.6 percent to 79.2 percent) and a 3.8 percent increase in search accuracy within just three automated iterations. Furthermore, on complex reasoning tasks in the retail domain, ROAD improved agent performance by approximately 19 percent relative to the baseline. These findings suggest that mimicking the human engineering loop of failure analysis and patching offers a viable, data-efficient alternative to resource-intensive RL training for deploying reliable LLM agents.
Automatic Prompt Selection for Large Language Models
Large Language Models (LLMs) can perform various natural language processing tasks with suitable instruction prompts. However, designing effective prompts manually is challenging and time-consuming. Existing methods for automatic prompt optimization either lack flexibility or efficiency. In this paper, we propose an effective approach to automatically select the optimal prompt for a given input from a finite set of synthetic candidate prompts. Our approach consists of three steps: (1) clustering the training data and generating candidate prompts for each cluster using an LLM-based prompt generator; (2) synthesizing a dataset of input-prompt-output tuples for training a prompt evaluator to rank the prompts based on their relevance to the input; (3) using the prompt evaluator to select the best prompt for a new input at test time. Our approach balances prompt generality-specificity and eliminates the need for resource-intensive training and inference. It demonstrates competitive performance on zero-shot question-answering datasets: GSM8K, MultiArith, and AQuA.
CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automatic prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p in accuracy. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
No Loss, No Gain: Gated Refinement and Adaptive Compression for Prompt Optimization
Prompt engineering is crucial for leveraging the full potential of large language models (LLMs). While automatic prompt optimization offers a scalable alternative to costly manual design, generating effective prompts remains challenging. Existing methods often struggle to stably generate improved prompts, leading to low efficiency, and overlook that prompt optimization easily gets trapped in local optima. Addressing this, we propose GRACE, a framework that integrates two synergistic strategies: Gated Refinement and Adaptive Compression, achieving Efficient prompt optimization. The gated refinement strategy introduces a feedback regulation gate and an update rejection gate, which refine update signals to produce stable and effective prompt improvements. When optimization stagnates, the adaptive compression strategy distills the prompt's core concepts, restructuring the optimization trace and opening new paths. By strategically introducing information loss through refinement and compression, GRACE delivers substantial gains in performance and efficiency. In extensive experiments on 11 tasks across three practical domains, including BIG-Bench Hard (BBH), domain-specific, and general NLP tasks, GRACE achieves significant average relative performance improvements of 4.7%, 4.4% and 2.7% over state-of-the-art methods, respectively. Further analysis shows that GRACE achieves these gains using only 25% of the prompt generation budget required by prior methods, highlighting its high optimization efficiency and low computational overhead. Our code is available at https://github.com/Eric8932/GRACE.
PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Heuristic-based Sampling
Prompt optimization aims to find the best prompt to a large language model (LLM) for a given task. LLMs have been successfully used to help find and improve prompt candidates for single-step tasks. However, realistic tasks for agents are multi-step and introduce new challenges: (1) Prompt content is likely to be more extensive and complex, making it more difficult for LLMs to analyze errors, (2) the impact of an individual step is difficult to evaluate, and (3) different people may have varied preferences about task execution. While humans struggle to optimize prompts, they are good at providing feedback about LLM outputs; we therefore introduce a new LLM-driven discrete prompt optimization framework PRompt Optimization in Multi-Step Tasks (PROMST) that incorporates human-designed feedback rules to automatically offer direct suggestions for improvement. We also use an extra learned heuristic model that predicts prompt performance to efficiently sample from prompt candidates. This approach significantly outperforms both human-engineered prompts and several other prompt optimization methods across 11 representative multi-step tasks (an average 10.6\%-29.3\% improvement to current best methods on five LLMs respectively). We believe our work can serve as a benchmark for automatic prompt optimization for LLM-driven multi-step tasks. Datasets and Codes are available at https://github.com/yongchao98/PROMST. Project Page is available at https://yongchao98.github.io/MIT-REALM-PROMST.
UniAPO: Unified Multimodal Automated Prompt Optimization
Prompting is fundamental to unlocking the full potential of large language models. To automate and enhance this process, automatic prompt optimization (APO) has been developed, demonstrating effectiveness primarily in text-only input scenarios. However, extending existing APO methods to multimodal tasks, such as video-language generation introduces two core challenges: (i) visual token inflation, where long visual token sequences restrict context capacity and result in insufficient feedback signals; (ii) a lack of process-level supervision, as existing methods focus on outcome-level supervision and overlook intermediate supervision, limiting prompt optimization. We present UniAPO: Unified Multimodal Automated Prompt Optimization, the first framework tailored for multimodal APO. UniAPO adopts an EM-inspired optimization process that decouples feedback modeling and prompt refinement, making the optimization more stable and goal-driven. To further address the aforementioned challenges, we introduce a short-long term memory mechanism: historical feedback mitigates context limitations, while historical prompts provide directional guidance for effective prompt optimization. UniAPO achieves consistent gains across text, image, and video benchmarks, establishing a unified framework for efficient and transferable prompt optimization.
FIPO: Free-form Instruction-oriented Prompt Optimization with Preference Dataset and Modular Fine-tuning Schema
In the quest to facilitate the deep intelligence of Large Language Models (LLMs) accessible in final-end user-bot interactions, the art of prompt crafting emerges as a critical yet complex task for the average user. Contrast to previous model-oriented yet instruction-agnostic Automatic Prompt Optimization methodologies, yielding polished results for predefined target models while suffering rapid degradation with out-of-box models, we present Free-form Instruction-oriented Prompt Optimization (FIPO). This approach is supported by our large-scale prompt preference dataset and employs a modular fine-tuning schema. The FIPO schema reimagines the optimization process into manageable modules, anchored by a meta prompt that dynamically adapts content. This allows for the flexible integration of the raw task instruction, the optional instruction response, and the optional ground truth to produce finely optimized task prompts. The FIPO preference dataset is meticulously constructed using the optimal and suboptimal LLMs, undergoing rigorous cross-verification by human experts and analytical models. Applying the insights from the data with Tulu2 models and fine-tuning strategies, we validate the efficacy of FIPO schema across five public benchmarks. Codes, data and scripts are here: https://github.com/LuJunru/FIPO_Project.
Multi-module GRPO: Composing Policy Gradients and Prompt Optimization for Language Model Programs
Group Relative Policy Optimization (GRPO) has proven to be an effective tool for post-training language models (LMs). However, AI systems are increasingly expressed as modular programs that mix together multiple LM calls with distinct prompt templates and other tools, and it is not clear how best to leverage GRPO to improve these systems. We begin to address this challenge by defining mmGRPO, a simple multi-module generalization of GRPO that groups LM calls by module across rollouts and handles variable-length and interrupted trajectories. We find that mmGRPO, composed with automatic prompt optimization, improves accuracy by 11% on average across classification, many-hop search, and privacy-preserving delegation tasks against the post-trained LM, and by 5% against prompt optimization on its own. We open-source mmGRPO in DSPy as the dspy.GRPO optimizer.
Robust Prompt Optimization for Large Language Models Against Distribution Shifts
Large Language Model (LLM) has demonstrated significant ability in various Natural Language Processing tasks. However, their effectiveness is highly dependent on the phrasing of the task prompt, leading to research on automatic prompt optimization using labeled task data. We reveal that these prompt optimization techniques are vulnerable to distribution shifts such as subpopulation shifts, which are common for LLMs in real-world scenarios such as customer reviews analysis. In this light, we propose a new problem of robust prompt optimization for LLMs against distribution shifts, which requires the prompt optimized over the labeled source group can simultaneously generalize to an unlabeled target group. To solve this problem, we propose Generalized Prompt Optimization framework, which incorporates the unlabeled data from the target group into prompt optimization. Extensive experimental results demonstrate the effectiveness of the proposed framework with significant performance improvement on the target group and comparable performance on the source group.
SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images. While current methods adopt the paradigm of training a dedicated network end-to-end using labeled image data, they are limited in terms of generalizability and interpretability. To address these issues, we first present a simple yet well-crafted framework named {\name}, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework, providing a strong baseline for social relation recognition. Specifically, we instruct VFMs to translate image content into a textual social story, and then utilize LLMs for text-based reasoning. {\name} introduces systematic design principles to adapt VFMs and LLMs separately and bridge their gaps. Without additional model training, it achieves competitive zero-shot results on two databases while offering interpretable answers, as LLMs can generate language-based explanations for the decisions. The manual prompt design process for LLMs at the reasoning phase is tedious and an automated prompt optimization method is desired. As we essentially convert a visual classification task into a generative task of LLMs, automatic prompt optimization encounters a unique long prompt optimization issue. To address this issue, we further propose the Greedy Segment Prompt Optimization (GSPO), which performs a greedy search by utilizing gradient information at the segment level. Experimental results show that GSPO significantly improves performance, and our method also generalizes to different image styles. The code is available at https://github.com/Mengzibin/SocialGPT.
Improving Attributed Text Generation of Large Language Models via Preference Learning
Large language models have been widely adopted in natural language processing, yet they face the challenge of generating unreliable content. Recent works aim to reduce misinformation and hallucinations by resorting to attribution as a means to provide evidence (i.e., citations). However, current attribution methods usually focus on the retrieval stage and automatic evaluation that neglect mirroring the citation mechanisms in human scholarly writing to bolster credibility. In this paper, we address these challenges by modelling the attribution task as preference learning and introducing an Automatic Preference Optimization (APO) framework. First, we create a curated collection for post-training with 6,330 examples by collecting and filtering from existing datasets. Second, considering the high cost of labelling preference data, we further propose an automatic method to synthesize attribution preference data resulting in 95,263 pairs. Moreover, inspired by the human citation process, we further propose a progressive preference optimization method by leveraging fine-grained information. Extensive experiments on three datasets (i.e., ASQA, StrategyQA, and ELI5) demonstrate that APO achieves state-of-the-art citation F1 with higher answer quality.
Are Large Language Models Good Prompt Optimizers?
LLM-based Automatic Prompt Optimization, which typically utilizes LLMs as Prompt Optimizers to self-reflect and refine prompts, has shown promising performance in recent studies. Despite the success, the underlying mechanism of this approach remains unexplored, and the true effectiveness of LLMs as Prompt Optimizers requires further validation. In this work, we conducted a comprehensive study to uncover the actual mechanism of LLM-based Prompt Optimization. Our findings reveal that the LLM optimizers struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge rather than genuinely reflecting on the errors. Furthermore, even when the reflection is semantically valid, the LLM optimizers often fail to generate appropriate prompts for the target models with a single prompt refinement step, partly due to the unpredictable behaviors of the target models. Based on the observations, we introduce a new "Automatic Behavior Optimization" paradigm, which directly optimizes the target model's behavior in a more controllable manner. We hope our study can inspire new directions for automatic prompt optimization development.
Using Adaptive Empathetic Responses for Teaching English
Existing English-teaching chatbots rarely incorporate empathy explicitly in their feedback, but empathetic feedback could help keep students engaged and reduce learner anxiety. Toward this end, we propose the task of negative emotion detection via audio, for recognizing empathetic feedback opportunities in language learning. We then build the first spoken English-teaching chatbot with adaptive, empathetic feedback. This feedback is synthesized through automatic prompt optimization of ChatGPT and is evaluated with English learners. We demonstrate the effectiveness of our system through a preliminary user study.
A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends
Deep learning has solved a problem that as little as five years ago was thought by many to be intractable - the automatic recognition of patterns in data; and it can do so with accuracy that often surpasses human beings. It has solved problems beyond the realm of traditional, hand-crafted machine learning algorithms and captured the imagination of practitioners trying to make sense out of the flood of data that now inundates our society. As public awareness of the efficacy of DL increases so does the desire to make use of it. But even for highly trained professionals it can be daunting to approach the rapidly increasing body of knowledge produced by experts in the field. Where does one start? How does one determine if a particular model is applicable to their problem? How does one train and deploy such a network? A primer on the subject can be a good place to start. With that in mind, we present an overview of some of the key multilayer ANNs that comprise DL. We also discuss some new automatic architecture optimization protocols that use multi-agent approaches. Further, since guaranteeing system uptime is becoming critical to many computer applications, we include a section on using neural networks for fault detection and subsequent mitigation. This is followed by an exploratory survey of several application areas where DL has emerged as a game-changing technology: anomalous behavior detection in financial applications or in financial time-series forecasting, predictive and prescriptive analytics, medical image processing and analysis and power systems research. The thrust of this review is to outline emerging areas of application-oriented research within the DL community as well as to provide a reference to researchers seeking to use it in their work for what it does best: statistical pattern recognition with unparalleled learning capacity with the ability to scale with information.
Prompts as Auto-Optimized Training Hyperparameters: Training Best-in-Class IR Models from Scratch with 10 Gold Labels
We develop a method for training small-scale (under 100M parameter) neural information retrieval models with as few as 10 gold relevance labels. The method depends on generating synthetic queries for documents using a language model (LM), and the key step is that we automatically optimize the LM prompt that is used to generate these queries based on training quality. In experiments with the BIRCO benchmark, we find that models trained with our method outperform RankZephyr and are competitive with RankLLama, both of which are 7B parameter models trained on over 100K labels. These findings point to the power of automatic prompt optimization for synthetic dataset generation.
DeepArchitect: Automatically Designing and Training Deep Architectures
In deep learning, performance is strongly affected by the choice of architecture and hyperparameters. While there has been extensive work on automatic hyperparameter optimization for simple spaces, complex spaces such as the space of deep architectures remain largely unexplored. As a result, the choice of architecture is done manually by the human expert through a slow trial and error process guided mainly by intuition. In this paper we describe a framework for automatically designing and training deep models. We propose an extensible and modular language that allows the human expert to compactly represent complex search spaces over architectures and their hyperparameters. The resulting search spaces are tree-structured and therefore easy to traverse. Models can be automatically compiled to computational graphs once values for all hyperparameters have been chosen. We can leverage the structure of the search space to introduce different model search algorithms, such as random search, Monte Carlo tree search (MCTS), and sequential model-based optimization (SMBO). We present experiments comparing the different algorithms on CIFAR-10 and show that MCTS and SMBO outperform random search. In addition, these experiments show that our framework can be used effectively for model discovery, as it is possible to describe expressive search spaces and discover competitive models without much effort from the human expert. Code for our framework and experiments has been made publicly available.
Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments
Large language models (LLMs) have shown promising abilities as cost-effective and reference-free evaluators for assessing language generation quality. In particular, pairwise LLM evaluators, which compare two generated texts and determine the preferred one, have been employed in a wide range of applications. However, LLMs exhibit preference biases and worrying sensitivity to prompt designs. In this work, we first reveal that the predictive preference of LLMs can be highly brittle and skewed, even with semantically equivalent instructions. We find that fairer predictive preferences from LLMs consistently lead to judgments that are better aligned with humans. Motivated by this phenomenon, we propose an automatic Zero-shot Evaluation-oriented Prompt Optimization framework, ZEPO, which aims to produce fairer preference decisions and improve the alignment of LLM evaluators with human judgments. To this end, we propose a zero-shot learning objective based on the preference decision fairness. ZEPO demonstrates substantial performance improvements over state-of-the-art LLM evaluators, without requiring labeled data, on representative meta-evaluation benchmarks. Our findings underscore the critical correlation between preference fairness and human alignment, positioning ZEPO as an efficient prompt optimizer for bridging the gap between LLM evaluators and human judgments.
Efficient Mixed-Precision Large Language Model Inference with TurboMind
Mixed-precision inference techniques reduce the memory and computational demands of Large Language Models (LLMs) by applying hybrid precision formats to model weights, activations, and KV caches. This work introduces mixed-precision LLM inference techniques that encompass (i) systematic memory and compute optimization across hierarchical storage and tensor core architectures, and (ii) comprehensive end-to-end mixed-precision optimization across diverse precision formats and hardware configurations. Our approach features two novel mixed-precision pipelines designed for optimal hardware utilization: a General Matrix Multiply (GEMM) pipeline that optimizes matrix operations through offline weight packing and online acceleration, and an attention pipeline that enables efficient attention computation with arbitrary Query, Key, and Value precision combinations. The key implementation of the pipelines includes (i) hardware-aware weight packing for automatic format optimization, (ii) adaptive head alignment for efficient attention computation, (iii) instruction-level parallelism for memory hierarchy exploitation, and (iv) KV memory loading pipeline for enhanced inference efficiency. We conduct comprehensive evaluations across 16 popular LLMs and 4 representative GPU architectures. Results demonstrate that our approach achieves up to 61% lower serving latency (30% on average) and up to 156% higher throughput (58% on average) in mixed-precision workloads compared to existing mixed-precision frameworks, establishing consistent performance improvements across all tested configurations and hardware types. This work is integrated into TurboMind, a high-performance inference engine of the LMDeploy project, which is open-sourced and publicly available at https://github.com/InternLM/lmdeploy.
Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective
We propose a novel prompt design paradigm that challenges conventional wisdom in large language model (LLM) prompting. While conventional wisdom prioritizes well-crafted instructions and demonstrations for in-context learning (ICL), we show that pruning random demonstrations into seemingly incoherent "gibberish" can remarkably improve performance across diverse tasks. Notably, the "gibberish" always matches or surpasses state-of-the-art automatic prompt optimization techniques, achieving substantial gains regardless of LLM alignment. Nevertheless, discovering an effective pruning strategy is non-trivial, as existing attribution methods and prompt compression algorithms fail to deliver robust results, let alone human intuition. In terms of this, we propose a self-discover prompt optimization framework, PromptQuine, an evolutionary search framework that automatically searches for the pruning strategy by itself using only low-data regimes. Much like the emergent complexity in nature--such as symbiosis and self-organization--arising in response to resource constraints, our framework evolves and refines unconventional yet highly effective prompts by leveraging only the tokens present within the context. We demonstrate its effectiveness across classification, multi-choice question answering, generation and math reasoning tasks across LLMs, while achieving decent runtime efficiency. We hope our findings can guide mechanistic studies on in-context learning, and provide a call to action, to pave the way for more open-ended search algorithms for more effective LLM prompting.
DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines
Chaining language model (LM) calls as composable modules is fueling a new powerful way of programming. However, ensuring that LMs adhere to important constraints remains a key challenge, one often addressed with heuristic "prompt engineering". We introduce LM Assertions, a new programming construct for expressing computational constraints that LMs should satisfy. We integrate our constructs into the recent DSPy programming model for LMs, and present new strategies that allow DSPy to compile programs with arbitrary LM Assertions into systems that are more reliable and more accurate. In DSPy, LM Assertions can be integrated at compile time, via automatic prompt optimization, and/or at inference time, via automatic selfrefinement and backtracking. We report on two early case studies for complex question answering (QA), in which the LM program must iteratively retrieve information in multiple hops and synthesize a long-form answer with citations. We find that LM Assertions improve not only compliance with imposed rules and guidelines but also enhance downstream task performance, delivering intrinsic and extrinsic gains up to 35.7% and 13.3%, respectively. Our reference implementation of LM Assertions is integrated into DSPy at https://github.com/stanfordnlp/dspy
AgentScope: A Flexible yet Robust Multi-Agent Platform
With the rapid advancement of Large Language Models (LLMs), significant progress has been made in multi-agent applications. However, the complexities in coordinating agents' cooperation and LLMs' erratic performance pose notable challenges in developing robust and efficient multi-agent applications. To tackle these challenges, we propose AgentScope, a developer-centric multi-agent platform with message exchange as its core communication mechanism. Together with abundant syntactic tools, built-in resources, and user-friendly interactions, our communication mechanism significantly reduces the barriers to both development and understanding. Towards robust and flexible multi-agent application, AgentScope provides both built-in and customizable fault tolerance mechanisms while it is also armed with system-level supports for multi-modal data generation, storage and transmission. Additionally, we design an actor-based distribution framework, enabling easy conversion between local and distributed deployments and automatic parallel optimization without extra effort. With these features, AgentScope empowers developers to build applications that fully realize the potential of intelligent agents. We have released AgentScope at https://github.com/modelscope/agentscope, and hope AgentScope invites wider participation and innovation in this fast-moving field.
TensorIR: An Abstraction for Automatic Tensorized Program Optimization
Deploying deep learning models on various devices has become an important topic. The wave of hardware specialization brings a diverse set of acceleration primitives for multi-dimensional tensor computations. These new acceleration primitives, along with the emerging machine learning models, bring tremendous engineering challenges. In this paper, we present TensorIR, a compiler abstraction for optimizing programs with these tensor computation primitives. TensorIR generalizes the loop nest representation used in existing machine learning compilers to bring tensor computation as the first-class citizen. Finally, we build an end-to-end framework on top of our abstraction to automatically optimize deep learning models for given tensor computation primitives. Experimental results show that TensorIR compilation automatically uses the tensor computation primitives for given hardware backends and delivers performance that is competitive to state-of-art hand-optimized systems across platforms.
Dynamic LLM-Agent Network: An LLM-agent Collaboration Framework with Agent Team Optimization
Large language model (LLM) agents have been shown effective on a wide range of tasks, and by ensembling multiple LLM agents, their performances could be further improved. Existing approaches employ a fixed set of agents to interact with each other in a static architecture, which limits their generalizability to various tasks and requires strong human prior in designing these agents. In this work, we propose to construct a strategic team of agents communicating in a dynamic interaction architecture based on the task query. Specifically, we build a framework named Dynamic LLM-Agent Network (DyLAN) for LLM-agent collaboration on complicated tasks like reasoning and code generation. DyLAN enables agents to interact for multiple rounds in a dynamic architecture with inference-time agent selection and an early-stopping mechanism to improve performance and efficiency. We further design an automatic agent team optimization algorithm based on an unsupervised metric termed Agent Importance Score, enabling the selection of best agents based on the contribution each agent makes. Empirically, we demonstrate that DyLAN performs well in both reasoning and code generation tasks with reasonable computational cost. DyLAN achieves 13.0% and 13.3% improvement on MATH and HumanEval, respectively, compared to a single execution on GPT-35-turbo. On specific subjects of MMLU, agent team optimization in DyLAN increases accuracy by up to 25.0%.
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
We present a new algorithm to optimize distributions defined implicitly by parameterized stochastic diffusions. Doing so allows us to modify the outcome distribution of sampling processes by optimizing over their parameters. We introduce a general framework for first-order optimization of these processes, that performs jointly, in a single loop, optimization and sampling steps. This approach is inspired by recent advances in bilevel optimization and automatic implicit differentiation, leveraging the point of view of sampling as optimization over the space of probability distributions. We provide theoretical guarantees on the performance of our method, as well as experimental results demonstrating its effectiveness in real-world settings.
Prompt-Driven LLM Safeguarding via Directed Representation Optimization
Prepending model inputs with safety prompts is a common practice of safeguarding large language models (LLMs) from complying with queries that contain harmful intents. However, the working mechanisms of safety prompts have not yet been fully understood, which hinders the potential for automatically optimizing them for improved LLM safety. Motivated by this problem, we investigate the impact of safety prompts from the perspective of model representations. We find that in models' representation space, harmful and harmless queries can be largely distinguished, but this is not noticeably enhanced by safety prompts. Instead, the queries' representations are moved by different safety prompts in similar directions, where models become more prone to refusal (i.e., refusing to provide assistance) even when the queries are harmless. Inspired by these findings, we propose a method called DRO (Directed Representation Optimization) for automatic safety prompt optimization. DRO treats safety prompts as continuous, trainable embeddings and learns to move the representations of harmful/harmless queries along/opposite the direction in which the model's refusal probability increases. We demonstrate that DRO remarkably improves the safeguarding performance of human-crafted safety prompts and outperforms strong baselines, as evaluated on out-of-domain benchmarks, without compromising the general model capability.
SysLLMatic: Large Language Models are Software System Optimizers
Automatic software system optimization can improve software speed, reduce operating costs, and save energy. Traditional approaches to optimization rely on manual tuning and compiler heuristics, limiting their ability to generalize across diverse codebases and system contexts. Recent methods using Large Language Models (LLMs) offer automation to address these limitations, but often fail to scale to the complexity of real-world software systems and applications. We present SysLLMatic, a system that integrates LLMs with profiling-guided feedback and system performance insights to automatically optimize software code. We evaluate it on three benchmark suites: HumanEval_CPP (competitive programming in C++), SciMark2 (scientific kernels in Java), and DaCapoBench (large-scale software systems in Java). Results show that SysLLMatic can improve system performance, including latency, throughput, energy efficiency, memory usage, and CPU utilization. It consistently outperforms state-of-the-art LLM baselines on microbenchmarks. On large-scale application codes, it surpasses traditional compiler optimizations, achieving average relative improvements of 1.85x in latency and 2.24x in throughput. Our findings demonstrate that LLMs, guided by principled systems thinking and appropriate performance diagnostics, can serve as viable software system optimizers. We further identify limitations of our approach and the challenges involved in handling complex applications. This work provides a foundation for generating optimized code across various languages, benchmarks, and program sizes in a principled manner.
Putting People in LLMs' Shoes: Generating Better Answers via Question Rewriter
Large Language Models (LLMs) have demonstrated significant capabilities, particularly in the domain of question answering (QA). However, their effectiveness in QA is often undermined by the vagueness of user questions. To address this issue, we introduce single-round instance-level prompt optimization, referred to as question rewriter. By enhancing the intelligibility of human questions for black-box LLMs, our question rewriter improves the quality of generated answers. The rewriter is optimized using direct preference optimization based on feedback collected from automatic criteria for evaluating generated answers; therefore, its training does not require costly human annotations. The experiments across multiple black-box LLMs and long-form question answering (LFQA) datasets demonstrate the efficacy of our method. This paper provides a practical framework for training question rewriters and sets a precedent for future explorations in prompt optimization within LFQA tasks. Code is available at https://github.com/3244we/Question-Rewriter.
AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly
The learning rate (LR) schedule is one of the most important hyper-parameters needing careful tuning in training DNNs. However, it is also one of the least automated parts of machine learning systems and usually costs significant manual effort and computing. Though there are pre-defined LR schedules and optimizers with adaptive LR, they introduce new hyperparameters that need to be tuned separately for different tasks/datasets. In this paper, we consider the question: Can we automatically tune the LR over the course of training without human involvement? We propose an efficient method, AutoLRS, which automatically optimizes the LR for each training stage by modeling training dynamics. AutoLRS aims to find an LR applied to every tau steps that minimizes the resulted validation loss. We solve this black-box optimization on the fly by Bayesian optimization (BO). However, collecting training instances for BO requires a system to evaluate each LR queried by BO's acquisition function for tau steps, which is prohibitively expensive in practice. Instead, we apply each candidate LR for only tau'lltau steps and train an exponential model to predict the validation loss after tau steps. This mutual-training process between BO and the loss-prediction model allows us to limit the training steps invested in the BO search. We demonstrate the advantages and the generality of AutoLRS through extensive experiments of training DNNs for tasks from diverse domains using different optimizers. The LR schedules auto-generated by AutoLRS lead to a speedup of 1.22times, 1.43times, and 1.5times when training ResNet-50, Transformer, and BERT, respectively, compared to the LR schedules in their original papers, and an average speedup of 1.31times over state-of-the-art heavily-tuned LR schedules.
EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations
A fundamental problem in combinatorial optimization is identifying equivalent formulations, which can lead to more efficient solution strategies and deeper insights into a problem's computational complexity. The need to automatically identify equivalence between problem formulations has grown as optimization copilots--systems that generate problem formulations from natural language descriptions--have proliferated. However, existing approaches to checking formulation equivalence lack grounding, relying on simple heuristics which are insufficient for rigorous validation. Inspired by Karp reductions, in this work we introduce quasi-Karp equivalence, a formal criterion for determining when two optimization formulations are equivalent based on the existence of a mapping between their decision variables. We propose EquivaMap, a framework that leverages large language models to automatically discover such mappings, enabling scalable and reliable equivalence verification. To evaluate our approach, we construct the first open-source dataset of equivalent optimization formulations, generated by applying transformations such as adding slack variables or valid inequalities to existing formulations. Empirically, EquivaMap significantly outperforms existing methods, achieving substantial improvements in correctly identifying formulation equivalence.
PandaLM: An Automatic Evaluation Benchmark for LLM Instruction Tuning Optimization
Instruction tuning large language models (LLMs) remains a challenging task, owing to the complexity of hyperparameter selection and the difficulty involved in evaluating the tuned models. To determine the optimal hyperparameters, an automatic, robust, and reliable evaluation benchmark is essential. However, establishing such a benchmark is not a trivial task due to the challenges associated with evaluation accuracy and privacy protection. In response to these challenges, we introduce a judge large language model, named PandaLM, which is trained to distinguish the superior model given several LLMs. PandaLM's focus extends beyond just the objective correctness of responses, which is the main focus of traditional evaluation datasets. It addresses vital subjective factors such as relative conciseness, clarity, adherence to instructions, comprehensiveness, and formality. To ensure the reliability of PandaLM, we collect a diverse human-annotated test dataset, where all contexts are generated by humans and labels are aligned with human preferences. Our results indicate that PandaLM-7B achieves 93.75% of GPT-3.5's evaluation ability and 88.28% of GPT-4's in terms of F1-score on our test dataset. PandaLM enables the evaluation of LLM to be fairer but with less cost, evidenced by significant improvements achieved by models tuned through PandaLM compared to their counterparts trained with default Alpaca's hyperparameters. In addition, PandaLM does not depend on API-based evaluations, thus avoiding potential data leakage. All resources of PandaLM are released at https://github.com/WeOpenML/PandaLM.
MineTheGap: Automatic Mining of Biases in Text-to-Image Models
Text-to-Image (TTI) models generate images based on text prompts, which often leave certain aspects of the desired image ambiguous. When faced with these ambiguities, TTI models have been shown to exhibit biases in their interpretations. These biases can have societal impacts, e.g., when showing only a certain race for a stated occupation. They can also affect user experience when creating redundancy within a set of generated images instead of spanning diverse possibilities. Here, we introduce MineTheGap - a method for automatically mining prompts that cause a TTI model to generate biased outputs. Our method goes beyond merely detecting bias for a given prompt. Rather, it leverages a genetic algorithm to iteratively refine a pool of prompts, seeking for those that expose biases. This optimization process is driven by a novel bias score, which ranks biases according to their severity, as we validate on a dataset with known biases. For a given prompt, this score is obtained by comparing the distribution of generated images to the distribution of LLM-generated texts that constitute variations on the prompt. Code and examples are available on the project's webpage.
Align to Misalign: Automatic LLM Jailbreak with Meta-Optimized LLM Judges
Identifying the vulnerabilities of large language models (LLMs) is crucial for improving their safety by addressing inherent weaknesses. Jailbreaks, in which adversaries bypass safeguards with crafted input prompts, play a central role in red-teaming by probing LLMs to elicit unintended or unsafe behaviors. Recent optimization-based jailbreak approaches iteratively refine attack prompts by leveraging LLMs. However, they often rely heavily on either binary attack success rate (ASR) signals, which are sparse, or manually crafted scoring templates, which introduce human bias and uncertainty in the scoring outcomes. To address these limitations, we introduce AMIS (Align to MISalign), a meta-optimization framework that jointly evolves jailbreak prompts and scoring templates through a bi-level structure. In the inner loop, prompts are refined using fine-grained and dense feedback using a fixed scoring template. In the outer loop, the template is optimized using an ASR alignment score, gradually evolving to better reflect true attack outcomes across queries. This co-optimization process yields progressively stronger jailbreak prompts and more calibrated scoring signals. Evaluations on AdvBench and JBB-Behaviors demonstrate that AMIS achieves state-of-the-art performance, including 88.0% ASR on Claude-3.5-Haiku and 100.0% ASR on Claude-4-Sonnet, outperforming existing baselines by substantial margins.
A General Framework for User-Guided Bayesian Optimization
The optimization of expensive-to-evaluate black-box functions is prevalent in various scientific disciplines. Bayesian optimization is an automatic, general and sample-efficient method to solve these problems with minimal knowledge of the underlying function dynamics. However, the ability of Bayesian optimization to incorporate prior knowledge or beliefs about the function at hand in order to accelerate the optimization is limited, which reduces its appeal for knowledgeable practitioners with tight budgets. To allow domain experts to customize the optimization routine, we propose ColaBO, the first Bayesian-principled framework for incorporating prior beliefs beyond the typical kernel structure, such as the likely location of the optimizer or the optimal value. The generality of ColaBO makes it applicable across different Monte Carlo acquisition functions and types of user beliefs. We empirically demonstrate ColaBO's ability to substantially accelerate optimization when the prior information is accurate, and to retain approximately default performance when it is misleading.
HAO: Hardware-aware neural Architecture Optimization for Efficient Inference
Automatic algorithm-hardware co-design for DNN has shown great success in improving the performance of DNNs on FPGAs. However, this process remains challenging due to the intractable search space of neural network architectures and hardware accelerator implementation. Differing from existing hardware-aware neural architecture search (NAS) algorithms that rely solely on the expensive learning-based approaches, our work incorporates integer programming into the search algorithm to prune the design space. Given a set of hardware resource constraints, our integer programming formulation directly outputs the optimal accelerator configuration for mapping a DNN subgraph that minimizes latency. We use an accuracy predictor for different DNN subgraphs with different quantization schemes and generate accuracy-latency pareto frontiers. With low computational cost, our algorithm can generate quantized networks that achieve state-of-the-art accuracy and hardware performance on Xilinx Zynq (ZU3EG) FPGA for image classification on ImageNet dataset. The solution searched by our algorithm achieves 72.5% top-1 accuracy on ImageNet at framerate 50, which is 60% faster than MnasNet and 135% faster than FBNet with comparable accuracy.
Intent-based Prompt Calibration: Enhancing prompt optimization with synthetic boundary cases
Prompt engineering is a challenging and important task due to the high sensitivity of Large Language Models (LLMs) to the given prompt and the inherent ambiguity of a textual task instruction. Automatic prompt engineering is essential to achieve optimized performance from LLMs. Recent studies have demonstrated the capabilities of LLMs to automatically conduct prompt engineering by employing a meta-prompt that incorporates the outcomes of the last trials and proposes an improved prompt. However, this requires a high-quality benchmark to compare different prompts, which is difficult and expensive to acquire in many real-world use cases. In this work, we introduce a new method for automatic prompt engineering, using a calibration process that iteratively refines the prompt to the user intent. During the optimization process, the system jointly generates synthetic data of boundary use cases and optimizes the prompt according to the generated dataset. We demonstrate the effectiveness of our method with respect to strong proprietary models on real-world tasks such as moderation and generation. Our method outperforms state-of-the-art methods with a limited number of annotated samples. Furthermore, we validate the advantages of each one of the system's key components. Our system is built in a modular way, facilitating easy adaptation to other tasks. The code is available https://github.com/Eladlev/AutoPrompt{here}.
Efficient Automatic CASH via Rising Bandits
The Combined Algorithm Selection and Hyperparameter optimization (CASH) is one of the most fundamental problems in Automatic Machine Learning (AutoML). The existing Bayesian optimization (BO) based solutions turn the CASH problem into a Hyperparameter Optimization (HPO) problem by combining the hyperparameters of all machine learning (ML) algorithms, and use BO methods to solve it. As a result, these methods suffer from the low-efficiency problem due to the huge hyperparameter space in CASH. To alleviate this issue, we propose the alternating optimization framework, where the HPO problem for each ML algorithm and the algorithm selection problem are optimized alternately. In this framework, the BO methods are used to solve the HPO problem for each ML algorithm separately, incorporating a much smaller hyperparameter space for BO methods. Furthermore, we introduce Rising Bandits, a CASH-oriented Multi-Armed Bandits (MAB) variant, to model the algorithm selection in CASH. This framework can take the advantages of both BO in solving the HPO problem with a relatively small hyperparameter space and the MABs in accelerating the algorithm selection. Moreover, we further develop an efficient online algorithm to solve the Rising Bandits with provably theoretical guarantees. The extensive experiments on 30 OpenML datasets demonstrate the superiority of the proposed approach over the competitive baselines.
Automatic Joint Structured Pruning and Quantization for Efficient Neural Network Training and Compression
Structured pruning and quantization are fundamental techniques used to reduce the size of deep neural networks (DNNs) and typically are applied independently. Applying these techniques jointly via co-optimization has the potential to produce smaller, high-quality models. However, existing joint schemes are not widely used because of (1) engineering difficulties (complicated multi-stage processes), (2) black-box optimization (extensive hyperparameter tuning to control the overall compression), and (3) insufficient architecture generalization. To address these limitations, we present the framework GETA, which automatically and efficiently performs joint structured pruning and quantization-aware training on any DNNs. GETA introduces three key innovations: (i) a quantization-aware dependency graph (QADG) that constructs a pruning search space for generic quantization-aware DNN, (ii) a partially projected stochastic gradient method that guarantees layerwise bit constraints are satisfied, and (iii) a new joint learning strategy that incorporates interpretable relationships between pruning and quantization. We present numerical experiments on both convolutional neural networks and transformer architectures that show that our approach achieves competitive (often superior) performance compared to existing joint pruning and quantization methods.
AMD: Automatic Multi-step Distillation of Large-scale Vision Models
Transformer-based architectures have become the de-facto standard models for diverse vision tasks owing to their superior performance. As the size of the models continues to scale up, model distillation becomes extremely important in various real applications, particularly on devices limited by computational resources. However, prevailing knowledge distillation methods exhibit diminished efficacy when confronted with a large capacity gap between the teacher and the student, e.g, 10x compression rate. In this paper, we present a novel approach named Automatic Multi-step Distillation (AMD) for large-scale vision model compression. In particular, our distillation process unfolds across multiple steps. Initially, the teacher undergoes distillation to form an intermediate teacher-assistant model, which is subsequently distilled further to the student. An efficient and effective optimization framework is introduced to automatically identify the optimal teacher-assistant that leads to the maximal student performance. We conduct extensive experiments on multiple image classification datasets, including CIFAR-10, CIFAR-100, and ImageNet. The findings consistently reveal that our approach outperforms several established baselines, paving a path for future knowledge distillation methods on large-scale vision models.
AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation
Recent advancements in Large Language Models have transformed ML/AI development, necessitating a reevaluation of AutoML principles for the Retrieval-Augmented Generation (RAG) systems. To address the challenges of hyper-parameter optimization and online adaptation in RAG, we propose the AutoRAG-HP framework, which formulates the hyper-parameter tuning as an online multi-armed bandit (MAB) problem and introduces a novel two-level Hierarchical MAB (Hier-MAB) method for efficient exploration of large search spaces. We conduct extensive experiments on tuning hyper-parameters, such as top-k retrieved documents, prompt compression ratio, and embedding methods, using the ALCE-ASQA and Natural Questions datasets. Our evaluation from jointly optimization all three hyper-parameters demonstrate that MAB-based online learning methods can achieve Recall@5 approx 0.8 for scenarios with prominent gradients in search space, using only sim20% of the LLM API calls required by the Grid Search approach. Additionally, the proposed Hier-MAB approach outperforms other baselines in more challenging optimization scenarios. The code will be made available at https://aka.ms/autorag.
AutoEdit: Automatic Hyperparameter Tuning for Image Editing
Recent advances in diffusion models have revolutionized text-guided image editing, yet existing editing methods face critical challenges in hyperparameter identification. To get the reasonable editing performance, these methods often require the user to brute-force tune multiple interdependent hyperparameters, such as inversion timesteps and attention modification, etc. This process incurs high computational costs due to the huge hyperparameter search space. We consider searching optimal editing's hyperparameters as a sequential decision-making task within the diffusion denoising process. Specifically, we propose a reinforcement learning framework, which establishes a Markov Decision Process that dynamically adjusts hyperparameters across denoising steps, integrating editing objectives into a reward function. The method achieves time efficiency through proximal policy optimization while maintaining optimal hyperparameter configurations. Experiments demonstrate significant reduction in search time and computational overhead compared to existing brute-force approaches, advancing the practical deployment of a diffusion-based image editing framework in the real world.
Look before Transcription: End-to-End SlideASR with Visually-Anchored Policy Optimization
Automatic speech recognition (ASR) systems often struggle with domain-specific terminology, especially in specialized settings such as academic lectures. To address this, we define the SlideASR task, which leverages the rich visual information from presentation slides to improve transcription accuracy. Existing pipeline methods for this task tend to be complex and underperform. Although omni-modal large language models (OLLMs) provide a promising end-to-end framework, they frequently fail in practice by degenerating into simple optical character recognition (OCR) systems. To overcome this, we propose Visually-Anchored Policy Optimization (VAPO), a novel post-training method designed to control the model's reasoning process. Drawing on the Chain-of-Thought reasoning paradigm, VAPO enforces a structured "Look before Transcription" procedure using a <think><answer> format. Specifically, the model first performs OCR on the slide content within the think step, then generates the transcription by referencing this recognized visual information in the answer step. This reasoning process is optimized via reinforcement learning with four distinct rewards targeting format compliance, OCR accuracy, ASR quality, and visual anchoring consistency. To support further research, we construct SlideASR-Bench, a new entity-rich benchmark consisting of a synthetic dataset for training and testing, and a challenging real-world set for evaluation. Extensive experiments demonstrate that VAPO significantly improves recognition of domain-specific terms, establishing an effective end-to-end paradigm for SlideASR.
Automatic Failure Attribution and Critical Step Prediction Method for Multi-Agent Systems Based on Causal Inference
Multi-agent systems (MAS) are critical for automating complex tasks, yet their practical deployment is severely hampered by the challenge of failure attribution. Current diagnostic tools, which rely on statistical correlations, are fundamentally inadequate; on challenging benchmarks like Who\&When, state-of-the-art methods achieve less than 15\% accuracy in locating the root-cause step of a failure. To address this critical gap, we introduce the first failure attribution framework for MAS grounded in multi-granularity causal inference. Our approach makes two key technical contributions: (1) a performance causal inversion principle, which correctly models performance dependencies by reversing the data flow in execution logs, combined with Shapley values to accurately assign agent-level blame; (2) a novel causal discovery algorithm, CDC-MAS, that robustly identifies critical failure steps by tackling the non-stationary nature of MAS interaction data. The framework's attribution results directly fuel an automated optimization loop, generating targeted suggestions whose efficacy is validated via counterfactual simulations. Evaluations on the Who\&When and TRAIL benchmarks demonstrate a significant leap in performance. Our method achieves up to 36.2\% step-level accuracy. Crucially, the generated optimizations boost overall task success rates by an average of 22.4\%. This work provides a principled and effective solution for debugging complex agent interactions, paving the way for more reliable and interpretable multi-agent systems.
CTC-DRO: Robust Optimization for Reducing Language Disparities in Speech Recognition
Modern deep learning models often achieve high overall performance, but consistently fail on specific subgroups. Group distributionally robust optimization (group DRO) addresses this problem by minimizing the worst-group loss, but it fails when group losses misrepresent performance differences between groups. This is common in domains like speech, where the widely used connectionist temporal classification (CTC) loss not only scales with input length but also varies with linguistic and acoustic properties, leading to spurious differences between group losses. We present CTC-DRO, which addresses the shortcomings of the group DRO objective by smoothing the group weight update to prevent overemphasis on consistently high-loss groups, while using input length-matched batching to mitigate CTC's scaling issues. We evaluate CTC-DRO on the task of multilingual automatic speech recognition (ASR) across five language sets from the diverse ML-SUPERB 2.0 benchmark. CTC-DRO consistently outperforms group DRO and CTC-based baseline models, reducing the worst-language error by up to 47.1% and the average error by up to 32.9%. CTC-DRO can be applied to ASR with minimal computational costs, and, while motivated by multilingual ASR, offers the potential for reducing group disparities in other domains with similar challenges.
LOOPer: A Learned Automatic Code Optimizer For Polyhedral Compilers
While polyhedral compilers have shown success in implementing advanced code transformations, they still face challenges in selecting the ones that lead to the most profitable speedups. This has motivated the use of machine learning based cost models to guide the search for polyhedral optimizations. State-of-the-art polyhedral compilers have demonstrated a viable proof-of-concept of such an approach. While promising, this approach still faces significant limitations. State-of-the-art polyhedral compilers that use a deep learning cost model only support a small subset of affine transformations, limiting their ability to explore complex code transformations. Furthermore, their applicability does not scale beyond simple programs, thus excluding many program classes from their scope, such as those with non-rectangular iteration domains or multiple loop nests. These limitations significantly impact the generality of such compilers and autoschedulers and put into question the whole approach. In this paper, we introduce LOOPer, the first polyhedral autoscheduler that uses a deep learning based cost model and covers a large space of affine transformations and programs. LOOPer allows the optimization of an extensive set of programs while being effective at applying complex sequences of polyhedral transformations. We implement and evaluate LOOPer and show that it achieves competitive speedups over the state-of-the-art. On the PolyBench benchmarks, LOOPer achieves a geometric mean speedup of 1.84x over Tiramisu and 1.42x over Pluto, two state-of-the-art polyhedral autoschedulers.
Using Rewrite Strategies for Efficient Functional Automatic Differentiation
Automatic Differentiation (AD) has become a dominant technique in ML. AD frameworks have first been implemented for imperative languages using tapes. Meanwhile, functional implementations of AD have been developed, often based on dual numbers, which are close to the formal specification of differentiation and hence easier to prove correct. But these papers have focussed on correctness not efficiency. Recently, it was shown how an approach using dual numbers could be made efficient through the right optimizations. Optimizations are highly dependent on order, as one optimization can enable another. It can therefore be useful to have fine-grained control over the scheduling of optimizations. One method expresses compiler optimizations as rewrite rules, whose application can be combined and controlled using strategy languages. Previous work describes the use of term rewriting and strategies to generate high-performance code in a compiler for a functional language. In this work, we implement dual numbers AD in a functional array programming language using rewrite rules and strategy combinators for optimization. We aim to combine the elegance of differentiation using dual numbers with a succinct expression of the optimization schedule using a strategy language. We give preliminary evidence suggesting the viability of the approach on a micro-benchmark.
PennyLane: Automatic differentiation of hybrid quantum-classical computations
PennyLane is a Python 3 software framework for differentiable programming of quantum computers. The library provides a unified architecture for near-term quantum computing devices, supporting both qubit and continuous-variable paradigms. PennyLane's core feature is the ability to compute gradients of variational quantum circuits in a way that is compatible with classical techniques such as backpropagation. PennyLane thus extends the automatic differentiation algorithms common in optimization and machine learning to include quantum and hybrid computations. A plugin system makes the framework compatible with any gate-based quantum simulator or hardware. We provide plugins for hardware providers including the Xanadu Cloud, Amazon Braket, and IBM Quantum, allowing PennyLane optimizations to be run on publicly accessible quantum devices. On the classical front, PennyLane interfaces with accelerated machine learning libraries such as TensorFlow, PyTorch, JAX, and Autograd. PennyLane can be used for the optimization of variational quantum eigensolvers, quantum approximate optimization, quantum machine learning models, and many other applications.
CALM: Co-evolution of Algorithms and Language Model for Automatic Heuristic Design
Tackling complex optimization problems often relies on expert-designed heuristics, typically crafted through extensive trial and error. Recent advances demonstrate that large language models (LLMs), when integrated into well-designed evolutionary search frameworks, can autonomously discover high-performing heuristics at a fraction of the traditional cost. However, existing approaches predominantly rely on verbal guidance, i.e., manipulating the prompt generation process, to steer the evolution of heuristics, without adapting the underlying LLM. We propose a hybrid framework that combines verbal and numerical guidance, the latter achieved by fine-tuning the LLM via reinforcement learning based on the quality of generated heuristics. This joint optimization allows the LLM to co-evolve with the search process. Our method outperforms state-of-the-art (SOTA) baselines across various optimization tasks, running locally on a single 24GB GPU using a 7B model with INT4 quantization. It surpasses methods that rely solely on verbal guidance, even when those use significantly more powerful API-based models.
Prompt Alchemy: Automatic Prompt Refinement for Enhancing Code Generation
Code generation has emerged as a key task to automate software development by converting high-level descriptions into executable code. Large language models (LLMs) excel at this but depend heavily on input prompt quality.Manual prompt engineering can be time-consuming and inconsistent, limiting LLM effectiveness. This paper introduces Prochemy, an innovative method for automatically refining prompts to boost code generation. Prochemy overcomes manual prompt limitations by automating optimization, ensuring consistency during inference, and supporting multi-agent systems.It iteratively refines prompts based on model performance, using an optimized final prompt for improved consistency across tasks. We tested Prochemy on natural language-based code generation and translation tasks using three LLM series. Results indicate Prochemy enhances existing methods, improving performance by 5.0% for GPT-3.5-Turbo and 1.9% for GPT-4o over zero-shot baselines on HumanEval. In state-of-the-art LDB, Prochemy + LDB surpasses standalone methods by 1.2-1.8%. For code translation, Prochemy boosts GPT-4o's Java-to-Python (AVATAR) performance from 74.5 to 84.1 (+12.9%) and Python-to-Java from 66.8 to 78.2 (+17.1%). Moreover, Prochemy maintains strong performance when integrated with the o1-mini model, validating its efficacy in code tasks. Designed as plug-and-play, Prochemy optimizes prompts with minimal human input, bridging the gap between simple prompts and complex frameworks.
TextGrad: Automatic "Differentiation" via Text
AI is undergoing a paradigm shift, with breakthroughs achieved by systems orchestrating multiple large language models (LLMs) and other complex components. As a result, developing principled and automated optimization methods for compound AI systems is one of the most important new challenges. Neural networks faced a similar challenge in its early days until backpropagation and automatic differentiation transformed the field by making optimization turn-key. Inspired by this, we introduce TextGrad, a powerful framework performing automatic ``differentiation'' via text. TextGrad backpropagates textual feedback provided by LLMs to improve individual components of a compound AI system. In our framework, LLMs provide rich, general, natural language suggestions to optimize variables in computation graphs, ranging from code snippets to molecular structures. TextGrad follows PyTorch's syntax and abstraction and is flexible and easy-to-use. It works out-of-the-box for a variety of tasks, where the users only provide the objective function without tuning components or prompts of the framework. We showcase TextGrad's effectiveness and generality across a diverse range of applications, from question answering and molecule optimization to radiotherapy treatment planning. Without modifying the framework, TextGrad improves the zero-shot accuracy of GPT-4o in Google-Proof Question Answering from 51% to 55%, yields 20% relative performance gain in optimizing LeetCode-Hard coding problem solutions, improves prompts for reasoning, designs new druglike small molecules with desirable in silico binding, and designs radiation oncology treatment plans with high specificity. TextGrad lays a foundation to accelerate the development of the next-generation of AI systems.
CudaForge: An Agent Framework with Hardware Feedback for CUDA Kernel Optimization
Developing efficient CUDA kernels is increasingly critical for AI applications such as large-scale LLM training. However, manual kernel design is both costly and time-consuming, motivating automatic approaches that leverage LLMs for code generation. Existing methods for automatic kernel generation, however, often produce low-efficiency kernels, incur high computational overhead, and fail to generalize across settings. In this work, we propose CudaForge, a training-free multi-agent workflow for CUDA kernel generation and optimization. Our workflow is inspired by the iterative workflow of human experts, which contains steps such as developing initial kernels, testing correctness, analyzing hardware feedback, and iterative improvement. More specifically, CudaForge employs two LLM agents: a Coder and a Judge, that iteratively generate, correct, and optimize CUDA kernels, while integrating hardware feedback such as Nsight Compute (NCU) metrics. In extensive evaluations, we show that CudaForge, by leveraging base models like OpenAI-o3, achieves 97.6\% correctness of generated kernels and an average 1.68times speedup over PyTorch baselines, substantially surpassing state-of-the-art models including OpenAI-o3 and Kevin on KernelBench.Beyond accuracy and speed, CudaForge demonstrates strong generalization across GPUs (A100, RTX 6000, 4090, 3090) and base models (OpenAI-o3, GPT-5, gpt-oss-120B, Claude-Sonnet-4, QwQ-32B), while maintaining high efficiency. In particular, generating an optimized kernel takes about 26.5 minutes on one RTX6000 and incurs about \ 0.3 API cost, which is significantly cheaper than existing agentic work that costs 6 H100 hours and 5 API cost per kernel. Our results highlight that multi-agent, training-free workflows can enable cost-effective, generalizable, and high-performance CUDA kernel optimization. Code available at https://github.com/OptimAI-Lab/CudaForge
LLM-driven Indoor Scene Layout Generation via Scaled Human-aligned Data Synthesis and Multi-Stage Preference Optimization
Automatic indoor layout generation has attracted increasing attention due to its potential in interior design, virtual environment construction, and embodied AI. Existing methods fall into two categories: prompt-driven approaches that leverage proprietary LLM services (e.g., GPT APIs) and learning-based methods trained on layout data upon diffusion-based models. Prompt-driven methods often suffer from spatial inconsistency and high computational costs, while learning-based methods are typically constrained by coarse relational graphs and limited datasets, restricting their generalization to diverse room categories. In this paper, we revisit LLM-based indoor layout generation and present 3D-SynthPlace, a large-scale dataset that combines synthetic layouts generated via a 'GPT synthesize, Human inspect' pipeline, upgraded from the 3D-Front dataset. 3D-SynthPlace contains nearly 17,000 scenes, covering four common room types -- bedroom, living room, kitchen, and bathroom -- enriched with diverse objects and high-level spatial annotations. We further introduce OptiScene, a strong open-source LLM optimized for indoor layout generation, fine-tuned based on our 3D-SynthPlace dataset through our two-stage training. For the warum-up stage I, we adopt supervised fine-tuning (SFT), which is taught to first generate high-level spatial descriptions then conditionally predict concrete object placements. For the reinforcing stage II, to better align the generated layouts with human design preferences, we apply multi-turn direct preference optimization (DPO), which significantly improving layout quality and generation success rates. Extensive experiments demonstrate that OptiScene outperforms traditional prompt-driven and learning-based baselines. Moreover, OptiScene shows promising potential in interactive tasks such as scene editing and robot navigation.
Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model
Heuristics are widely used for dealing with complex search and optimization problems. However, manual design of heuristics can be often very labour extensive and requires rich working experience and knowledge. This paper proposes Evolution of Heuristic (EoH), a novel evolutionary paradigm that leverages both Large Language Models (LLMs) and Evolutionary Computation (EC) methods for Automatic Heuristic Design (AHD). EoH represents the ideas of heuristics in natural language, termed thoughts. They are then translated into executable codes by LLMs. The evolution of both thoughts and codes in an evolutionary search framework makes it very effective and efficient for generating high-performance heuristics. Experiments on three widely studied combinatorial optimization benchmark problems demonstrate that EoH outperforms commonly used handcrafted heuristics and other recent AHD methods including FunSearch. Particularly, the heuristic produced by EoH with a low computational budget (in terms of the number of queries to LLMs) significantly outperforms widely-used human hand-crafted baseline algorithms for the online bin packing problem.
Group Relative Policy Optimization for Speech Recognition
Speech Recognition has seen a dramatic shift towards adopting Large Language Models (LLMs). This shift is partly driven by good scalability properties demonstrated by LLMs, ability to leverage large amounts of labelled, unlabelled speech and text data, streaming capabilities with auto-regressive framework and multi-tasking with instruction following characteristics of LLMs. However, simple next-token prediction objective, typically employed with LLMs, have certain limitations in performance and challenges with hallucinations. In this paper, we propose application of Group Relative Policy Optimization (GRPO) to enable reinforcement learning from human feedback for automatic speech recognition (ASR). We design simple rule based reward functions to guide the policy updates. We demonstrate significant improvements in word error rate (upto 18.4% relative), reduction in hallucinations, increased robustness on out-of-domain datasets and effectiveness in domain adaptation.
The simple essence of automatic differentiation
Automatic differentiation (AD) in reverse mode (RAD) is a central component of deep learning and other uses of large-scale optimization. Commonly used RAD algorithms such as backpropagation, however, are complex and stateful, hindering deep understanding, improvement, and parallel execution. This paper develops a simple, generalized AD algorithm calculated from a simple, natural specification. The general algorithm is then specialized by varying the representation of derivatives. In particular, applying well-known constructions to a naive representation yields two RAD algorithms that are far simpler than previously known. In contrast to commonly used RAD implementations, the algorithms defined here involve no graphs, tapes, variables, partial derivatives, or mutation. They are inherently parallel-friendly, correct by construction, and usable directly from an existing programming language with no need for new data types or programming style, thanks to use of an AD-agnostic compiler plugin.
DenseDPO: Fine-Grained Temporal Preference Optimization for Video Diffusion Models
Direct Preference Optimization (DPO) has recently been applied as a post-training technique for text-to-video diffusion models. To obtain training data, annotators are asked to provide preferences between two videos generated from independent noise. However, this approach prohibits fine-grained comparisons, and we point out that it biases the annotators towards low-motion clips as they often contain fewer visual artifacts. In this work, we introduce DenseDPO, a method that addresses these shortcomings by making three contributions. First, we create each video pair for DPO by denoising corrupted copies of a ground truth video. This results in aligned pairs with similar motion structures while differing in local details, effectively neutralizing the motion bias. Second, we leverage the resulting temporal alignment to label preferences on short segments rather than entire clips, yielding a denser and more precise learning signal. With only one-third of the labeled data, DenseDPO greatly improves motion generation over vanilla DPO, while matching it in text alignment, visual quality, and temporal consistency. Finally, we show that DenseDPO unlocks automatic preference annotation using off-the-shelf Vision Language Models (VLMs): GPT accurately predicts segment-level preferences similar to task-specifically fine-tuned video reward models, and DenseDPO trained on these labels achieves performance close to using human labels.
Flexible Isosurface Extraction for Gradient-Based Mesh Optimization
This work considers gradient-based mesh optimization, where we iteratively optimize for a 3D surface mesh by representing it as the isosurface of a scalar field, an increasingly common paradigm in applications including photogrammetry, generative modeling, and inverse physics. Existing implementations adapt classic isosurface extraction algorithms like Marching Cubes or Dual Contouring; these techniques were designed to extract meshes from fixed, known fields, and in the optimization setting they lack the degrees of freedom to represent high-quality feature-preserving meshes, or suffer from numerical instabilities. We introduce FlexiCubes, an isosurface representation specifically designed for optimizing an unknown mesh with respect to geometric, visual, or even physical objectives. Our main insight is to introduce additional carefully-chosen parameters into the representation, which allow local flexible adjustments to the extracted mesh geometry and connectivity. These parameters are updated along with the underlying scalar field via automatic differentiation when optimizing for a downstream task. We base our extraction scheme on Dual Marching Cubes for improved topological properties, and present extensions to optionally generate tetrahedral and hierarchically-adaptive meshes. Extensive experiments validate FlexiCubes on both synthetic benchmarks and real-world applications, showing that it offers significant improvements in mesh quality and geometric fidelity.
Unsupervised Visual Chain-of-Thought Reasoning via Preference Optimization
Chain-of-thought (CoT) reasoning greatly improves the interpretability and problem-solving abilities of multimodal large language models (MLLMs). However, existing approaches are focused on text CoT, limiting their ability to leverage visual cues. Visual CoT remains underexplored, and the only work is based on supervised fine-tuning (SFT) that relies on extensive labeled bounding-box data and is hard to generalize to unseen cases. In this paper, we introduce Unsupervised Visual CoT (UV-CoT), a novel framework for image-level CoT reasoning via preference optimization. UV-CoT performs preference comparisons between model-generated bounding boxes (one is preferred and the other is dis-preferred), eliminating the need for bounding-box annotations. We get such preference data by introducing an automatic data generation pipeline. Given an image, our target MLLM (e.g., LLaVA-1.5-7B) generates seed bounding boxes using a template prompt and then answers the question using each bounded region as input. An evaluator MLLM (e.g., OmniLLM-12B) ranks the responses, and these rankings serve as supervision to train the target MLLM with UV-CoT by minimizing negative log-likelihood losses. By emulating human perception--identifying key regions and reasoning based on them--UV-CoT can improve visual comprehension, particularly in spatial reasoning tasks where textual descriptions alone fall short. Our experiments on six datasets demonstrate the superiority of UV-CoT, compared to the state-of-the-art textual and visual CoT methods. Our zero-shot testing on four unseen datasets shows the strong generalization of UV-CoT. The code is available in https://github.com/kesenzhao/UV-CoT.
Automatic assembly of aero engine low pressure turbine shaft based on 3D vision measurement
In order to solve the problem of low automation of Aero-engine Turbine shaft assembly and the difficulty of non-contact high-precision measurement, a structured light binocular measurement technology for key components of aero-engine is proposed in this paper. Combined with three-dimensional point cloud data processing and assembly position matching algorithm, the high-precision measurement of shaft hole assembly posture in the process of turbine shaft docking is realized. Firstly, the screw thread curve on the bolt surface is segmented based on PCA projection and edge point cloud clustering, and Hough transform is used to model fit the three-dimensional thread curve. Then the preprocessed two-dimensional convex hull is constructed to segment the key hole location features, and the mounting surface and hole location obtained by segmentation are fitted based on RANSAC method. Finally, the geometric feature matching is used the evaluation index of turbine shaft assembly is established to optimize the pose. The final measurement accuracy of mounting surface matching is less than 0.05mm, and the measurement accuracy of mounting hole matching based on minimum ance optimization is less than 0.1 degree. The measurement algorithm is implemented on the automatic assembly test-bed of a certain type of aero-engine low-pressure turbine rotor. In the narrow installation space, the assembly process of the turbine shaft assembly, such as the automatic alignment and docking of the shaft hole, the automatic heating and temperature measurement of the installation seam, and the automatic tightening of the two guns, are realized in the narrow installation space Guidance, real-time inspection and assembly result evaluation.
PerfCoder: Large Language Models for Interpretable Code Performance Optimization
Large language models (LLMs) have achieved remarkable progress in automatic code generation, yet their ability to produce high-performance code remains limited--a critical requirement in real-world software systems. We argue that current LLMs struggle not only due to data scarcity but, more importantly, because they lack supervision that guides interpretable and effective performance improvements. In this work, we introduce PerfCoder, a family of LLMs specifically designed to generate performance-enhanced code from source code via interpretable, customized optimizations. PerfCoder is fine-tuned on a curated collection of real-world optimization trajectories with human-readable annotations, and preference-aligned by reinforcement fine-tuning using runtime measurements, enabling it to propose input-specific improvement strategies and apply them directly without relying on iterative refinement. On the PIE code performance benchmark, PerfCoder surpasses all existing models in both runtime speedup and effective optimization rate, demonstrating that performance optimization cannot be achieved by scale alone but requires optimization stratetgy awareness. In addition, PerfCoder can generate interpretable feedback about the source code, which, when provided as input to a larger LLM in a planner-and-optimizer cooperative workflow, can further improve outcomes. Specifically, we elevate the performance of 32B models and GPT-5 to new levels on code optimization, substantially surpassing their original performance.
Sem-DPO: Mitigating Semantic Inconsistency in Preference Optimization for Prompt Engineering
Generative AI can now synthesize strikingly realistic images from text, yet output quality remains highly sensitive to how prompts are phrased. Direct Preference Optimization (DPO) offers a lightweight, off-policy alternative to RL for automatic prompt engineering, but its token-level regularization leaves semantic inconsistency unchecked as prompts that win higher preference scores can still drift away from the user's intended meaning. We introduce Sem-DPO, a variant of DPO that preserves semantic consistency yet retains its simplicity and efficiency. Sem-DPO adjusts the DPO loss using a weight based on how different the winning prompt is from the original, reducing the impact of training examples that are semantically misaligned. We provide the first analytical bound on semantic drift for preference-tuned prompt generators, showing that Sem-DPO keeps learned prompts within a provably bounded neighborhood of the original text. On three standard text-to-image prompt-optimization benchmarks and two language models, Sem-DPO achieves 8-12% higher CLIP similarity and 5-9% higher human-preference scores (HPSv2.1, PickScore) than DPO, while also outperforming state-of-the-art baselines. These findings suggest that strong flat baselines augmented with semantic weighting should become the new standard for prompt-optimization studies and lay the groundwork for broader, semantics-aware preference optimization in language models.
Galvatron: Automatic Distributed Training for Large Transformer Models
Training multi-billion to trillion-parameter language models efficiently on GPU clusters requires leveraging multiple parallelism strategies. We present Galvatron, a novel open-source framework (dubbed 'Optimus-Megatron' in the implementation) that dynamically combines data parallelism, tensor model parallelism, and pipeline parallelism to optimize training throughput. Built atop PyTorch and integrating NVIDIA's Megatron-LM and Microsoft's DeepSpeed, Galvatron automatically selects and adjusts parallelism strategies in real time based on model architecture, hardware, and training dynamics. This paper details Galvatron's key features -- automatic hybrid parallelism selection, layer-wise and phase-wise strategy optimization, and runtime adaptation -- and contrasts them with existing static frameworks. We describe the system's technical stack, including its use of DeepSpeed's ZeRO and NCCL communication, and provide an in-depth implementation overview of its core modules (profilers, strategy selector, parallelism manager). We then illustrate how Galvatron can be seamlessly integrated into existing training pipelines with minimal code modifications, providing companies a plug-and-play solution for efficient large-model training. Finally, we situate Galvatron in context with related efforts (NVIDIA Megatron-LM, Microsoft DeepSpeed, Google GShard, Meta FairScale, etc.), highlighting how it advances the state of the art in distributed deep learning. References to the GitHub repository and relevant literature are provided throughout.
Self-Organized Agents: A LLM Multi-Agent Framework toward Ultra Large-Scale Code Generation and Optimization
Recent advancements in automatic code generation using large language model (LLM) agent have brought us closer to the future of automated software development. However, existing single-agent approaches face limitations in generating and improving large-scale, complex codebases due to constraints in context length. To tackle this challenge, we propose Self-Organized multi-Agent framework (SoA), a novel multi-agent framework that enables the scalable and efficient generation and optimization of large-scale code. In SoA, self-organized agents operate independently to generate and modify code components while seamlessly collaborating to construct the overall codebase. A key feature of our framework is the automatic multiplication of agents based on problem complexity, allowing for dynamic scalability. This enables the overall code volume to be increased indefinitely according to the number of agents, while the amount of code managed by each agent remains constant. We evaluate SoA on the HumanEval benchmark and demonstrate that, compared to a single-agent system, each agent in SoA handles significantly less code, yet the overall generated code is substantially greater. Moreover, SoA surpasses the powerful single-agent baseline by 5% in terms of Pass@1 accuracy.
Tastle: Distract Large Language Models for Automatic Jailbreak Attack
Large language models (LLMs) have achieved significant advances in recent days. Extensive efforts have been made before the public release of LLMs to align their behaviors with human values. The primary goal of alignment is to ensure their helpfulness, honesty and harmlessness. However, even meticulously aligned LLMs remain vulnerable to malicious manipulations such as jailbreaking, leading to unintended behaviors. The jailbreak is to intentionally develop a malicious prompt that escapes from the LLM security restrictions to produce uncensored detrimental contents. Previous works explore different jailbreak methods for red teaming LLMs, yet they encounter challenges regarding to effectiveness and scalability. In this work, we propose Tastle, a novel black-box jailbreak framework for automated red teaming of LLMs. We designed malicious content concealing and memory reframing with an iterative optimization algorithm to jailbreak LLMs, motivated by the research about the distractibility and over-confidence phenomenon of LLMs. Extensive experiments of jailbreaking both open-source and proprietary LLMs demonstrate the superiority of our framework in terms of effectiveness, scalability and transferability. We also evaluate the effectiveness of existing jailbreak defense methods against our attack and highlight the crucial need to develop more effective and practical defense strategies.
Facilitating Database Tuning with Hyper-Parameter Optimization: A Comprehensive Experimental Evaluation
Recently, using automatic configuration tuning to improve the performance of modern database management systems (DBMSs) has attracted increasing interest from the database community. This is embodied with a number of systems featuring advanced tuning capabilities being developed. However, it remains a challenge to select the best solution for database configuration tuning, considering the large body of algorithm choices. In addition, beyond the applications on database systems, we could find more potential algorithms designed for configuration tuning. To this end, this paper provides a comprehensive evaluation of configuration tuning techniques from a broader perspective, hoping to better benefit the database community. In particular, we summarize three key modules of database configuration tuning systems and conduct extensive ablation studies using various challenging cases. Our evaluation demonstrates that the hyper-parameter optimization algorithms can be borrowed to further enhance the database configuration tuning. Moreover, we identify the best algorithm choices for different modules. Beyond the comprehensive evaluations, we offer an efficient and unified database configuration tuning benchmark via surrogates that reduces the evaluation cost to a minimum, allowing for extensive runs and analysis of new techniques.
Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond
Linear relaxation based perturbation analysis (LiRPA) for neural networks, which computes provable linear bounds of output neurons given a certain amount of input perturbation, has become a core component in robustness verification and certified defense. The majority of LiRPA-based methods focus on simple feed-forward networks and need particular manual derivations and implementations when extended to other architectures. In this paper, we develop an automatic framework to enable perturbation analysis on any neural network structures, by generalizing existing LiRPA algorithms such as CROWN to operate on general computational graphs. The flexibility, differentiability and ease of use of our framework allow us to obtain state-of-the-art results on LiRPA based certified defense on fairly complicated networks like DenseNet, ResNeXt and Transformer that are not supported by prior works. Our framework also enables loss fusion, a technique that significantly reduces the computational complexity of LiRPA for certified defense. For the first time, we demonstrate LiRPA based certified defense on Tiny ImageNet and Downscaled ImageNet where previous approaches cannot scale to due to the relatively large number of classes. Our work also yields an open-source library for the community to apply LiRPA to areas beyond certified defense without much LiRPA expertise, e.g., we create a neural network with a probably flat optimization landscape by applying LiRPA to network parameters. Our opensource library is available at https://github.com/KaidiXu/auto_LiRPA.
AutoTriton: Automatic Triton Programming with Reinforcement Learning in LLMs
Kernel development in deep learning requires optimizing computational units across hardware while balancing memory management, parallelism, and hardware-specific optimizations through extensive empirical tuning. Although domain-specific languages like Triton simplify GPU programming by abstracting low-level details, developers must still manually tune critical parameters such as tile sizes and memory access patterns through iterative experimentation, creating substantial barriers to optimal performance and wider adoption. In this work, we introduce AutoTriton, the first model dedicated to Triton programming powered by reinforcement learning (RL). AutoTriton performs supervised fine-tuning (SFT) to be equipped with essential Triton programming expertise using a high-quality data gathering pipeline, and conducts RL with Group Relative Policy Optimization (GRPO) algorithm, combining a rule-based reward and an execution-based reward to further improve Triton programming ability, sequentially. Experiments across five evaluation channels of TritonBench and KernelBench illustrate that our 8B model AutoTriton achieves performance comparable to mainstream large models, including Claude-4-Sonnet and DeepSeek-R1-0528. Further experimental analysis demonstrates the crucial role of each module within AutoTriton, including the SFT stage, the RL stage, and the reward design strategy. These findings underscore the promise of RL for automatically generating high-performance kernels, and since high-performance kernels are core components of AI systems, this breakthrough establishes an important foundation for building more efficient AI systems. The model and code will be available at https://github.com/AI9Stars/AutoTriton.
Auto-RT: Automatic Jailbreak Strategy Exploration for Red-Teaming Large Language Models
Automated red-teaming has become a crucial approach for uncovering vulnerabilities in large language models (LLMs). However, most existing methods focus on isolated safety flaws, limiting their ability to adapt to dynamic defenses and uncover complex vulnerabilities efficiently. To address this challenge, we propose Auto-RT, a reinforcement learning framework that automatically explores and optimizes complex attack strategies to effectively uncover security vulnerabilities through malicious queries. Specifically, we introduce two key mechanisms to reduce exploration complexity and improve strategy optimization: 1) Early-terminated Exploration, which accelerate exploration by focusing on high-potential attack strategies; and 2) Progressive Reward Tracking algorithm with intermediate downgrade models, which dynamically refine the search trajectory toward successful vulnerability exploitation. Extensive experiments across diverse LLMs demonstrate that, by significantly improving exploration efficiency and automatically optimizing attack strategies, Auto-RT detects a boarder range of vulnerabilities, achieving a faster detection speed and 16.63\% higher success rates compared to existing methods.
Preference Ranking Optimization for Human Alignment
Large language models (LLMs) often contain misleading content, emphasizing the need to align them with human values to ensure secur AI systems. Reinforcement learning from human feedback (RLHF) has been employed to achieve this alignment by combining a reward model, typically based on Bradley-Terry paired comparison, with an RL algorithm such as Proximal Policy Optimization (PPO) to optimize LLM responses. However, RLHF exhibits complexity, instability, and sensitivity to hyperparameters. In this paper, we propose Preference Ranking Optimization (PRO) as an alternative to PPO for directly aligning LLMs with the Bradley-Terry comparison. PRO extends the pairwise Bradley-Terry comparison to accommodate preference rankings of any length. By iteratively contrasting the likelihood of generating responses, PRO instructs the LLM to prioritize the best response while progressively ranking the remaining responses. In this manner, PRO effectively transforms human alignment into aligning the probability ranking of n responses generated by LLM with the preference ranking of humans towards these responses. Experiments have shown that PRO outperforms existing alignment algorithms, achieving comparable results to ChatGPT and human responses through automatic-based, reward-based, GPT-4, and human evaluations. Furthermore, we demonstrate that longer, more diverse, and higher-quality preference ranking sequences can consistently enhance the performance of human alignment.
Towards Secure and Usable 3D Assets: A Novel Framework for Automatic Visible Watermarking
3D models, particularly AI-generated ones, have witnessed a recent surge across various industries such as entertainment. Hence, there is an alarming need to protect the intellectual property and avoid the misuse of these valuable assets. As a viable solution to address these concerns, we rigorously define the novel task of automated 3D visible watermarking in terms of two competing aspects: watermark quality and asset utility. Moreover, we propose a method of embedding visible watermarks that automatically determines the right location, orientation, and number of watermarks to be placed on arbitrary 3D assets for high watermark quality and asset utility. Our method is based on a novel rigid-body optimization that uses back-propagation to automatically learn transforms for ideal watermark placement. In addition, we propose a novel curvature-matching method for fusing the watermark into the 3D model that further improves readability and security. Finally, we provide a detailed experimental analysis on two benchmark 3D datasets validating the superior performance of our approach in comparison to baselines. Code and demo are available.
Fine-Grained Reward Optimization for Machine Translation using Error Severity Mappings
Reinforcement learning (RL) has been proven to be an effective and robust method for training neural machine translation systems, especially when paired with powerful reward models that accurately assess translation quality. However, most research has focused on RL methods that use sentence-level feedback, leading to inefficient learning signals due to the reward sparsity problem -- the model receives a single score for the entire sentence. To address this, we propose a novel approach that leverages fine-grained, token-level quality assessments along with error severity levels using RL methods. Specifically, we use xCOMET, a state-of-the-art quality estimation system, as our token-level reward model. We conduct experiments on small and large translation datasets with standard encoder-decoder and large language models-based machine translation systems, comparing the impact of sentence-level versus fine-grained reward signals on translation quality. Our results show that training with token-level rewards improves translation quality across language pairs over baselines according to both automatic and human evaluation. Furthermore, token-level reward optimization improves training stability, evidenced by a steady increase in mean rewards over training epochs.
Improved Techniques for Optimization-Based Jailbreaking on Large Language Models
Large language models (LLMs) are being rapidly developed, and a key component of their widespread deployment is their safety-related alignment. Many red-teaming efforts aim to jailbreak LLMs, where among these efforts, the Greedy Coordinate Gradient (GCG) attack's success has led to a growing interest in the study of optimization-based jailbreaking techniques. Although GCG is a significant milestone, its attacking efficiency remains unsatisfactory. In this paper, we present several improved (empirical) techniques for optimization-based jailbreaks like GCG. We first observe that the single target template of "Sure" largely limits the attacking performance of GCG; given this, we propose to apply diverse target templates containing harmful self-suggestion and/or guidance to mislead LLMs. Besides, from the optimization aspects, we propose an automatic multi-coordinate updating strategy in GCG (i.e., adaptively deciding how many tokens to replace in each step) to accelerate convergence, as well as tricks like easy-to-hard initialisation. Then, we combine these improved technologies to develop an efficient jailbreak method, dubbed I-GCG. In our experiments, we evaluate on a series of benchmarks (such as NeurIPS 2023 Red Teaming Track). The results demonstrate that our improved techniques can help GCG outperform state-of-the-art jailbreaking attacks and achieve nearly 100% attack success rate. The code is released at https://github.com/jiaxiaojunQAQ/I-GCG.
What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning
Instruction tuning is a standard technique employed to align large language models to end tasks and user preferences after the initial pretraining phase. Recent research indicates the critical role of data engineering in instruction tuning -- when appropriately selected, only limited data is necessary to achieve superior performance. However, we still lack a principled understanding of what makes good instruction tuning data for alignment, and how we should select data automatically and effectively. In this work, we delve deeply into automatic data selection strategies for alignment. We start with controlled studies to measure data across three dimensions: complexity, quality, and diversity, along which we examine existing methods and introduce novel techniques for enhanced data measurement. Subsequently, we propose a simple strategy to select data samples based on the measurement. We present deita (short for Data-Efficient Instruction Tuning for Alignment), a series of models fine-tuned from LLaMA and Mistral models using data samples automatically selected with our proposed approach. Empirically, deita performs better or on par with the state-of-the-art open-source alignment models with only 6K SFT training data samples -- over 10x less than the data used in the baselines. When further trained with direct preference optimization (DPO), deita-Mistral-7B + DPO trained with 6K SFT and 10K DPO samples achieve 7.55 MT-Bench and 90.06% AlpacaEval scores. We anticipate this work to provide tools on automatic data selection, facilitating data-efficient alignment. We release our models as well as the selected datasets for future researches to effectively align models more efficiently.
Bridging Evolutionary Multiobjective Optimization and GPU Acceleration via Tensorization
Evolutionary multiobjective optimization (EMO) has made significant strides over the past two decades. However, as problem scales and complexities increase, traditional EMO algorithms face substantial performance limitations due to insufficient parallelism and scalability. While most work has focused on algorithm design to address these challenges, little attention has been given to hardware acceleration, thereby leaving a clear gap between EMO algorithms and advanced computing devices, such as GPUs. To bridge the gap, we propose to parallelize EMO algorithms on GPUs via the tensorization methodology. By employing tensorization, the data structures and operations of EMO algorithms are transformed into concise tensor representations, which seamlessly enables automatic utilization of GPU computing. We demonstrate the effectiveness of our approach by applying it to three representative EMO algorithms: NSGA-III, MOEA/D, and HypE. To comprehensively assess our methodology, we introduce a multiobjective robot control benchmark using a GPU-accelerated physics engine. Our experiments show that the tensorized EMO algorithms achieve speedups of up to 1113x compared to their CPU-based counterparts, while maintaining solution quality and effectively scaling population sizes to hundreds of thousands. Furthermore, the tensorized EMO algorithms efficiently tackle complex multiobjective robot control tasks, producing high-quality solutions with diverse behaviors. Source codes are available at https://github.com/EMI-Group/evomo.
AutoML-GPT: Automatic Machine Learning with GPT
AI tasks encompass a wide range of domains and fields. While numerous AI models have been designed for specific tasks and applications, they often require considerable human efforts in finding the right model architecture, optimization algorithm, and hyperparameters. Recent advances in large language models (LLMs) like ChatGPT show remarkable capabilities in various aspects of reasoning, comprehension, and interaction. Consequently, we propose developing task-oriented prompts and automatically utilizing LLMs to automate the training pipeline. To implement this concept, we present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyperparameters. AutoML-GPT dynamically takes user requests from the model and data cards and composes the corresponding prompt paragraph. Ultimately, with this prompt paragraph, AutoML-GPT will automatically conduct the experiments from data processing to model architecture, hyperparameter tuning, and predicted training log. By leveraging {\ours}'s robust language capabilities and the available AI models, AutoML-GPT can tackle numerous intricate AI tasks across various tasks and datasets. This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas. Extensive experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many AI tasks.
Streaming Speech Recognition with Decoder-Only Large Language Models and Latency Optimization
Recent advances have demonstrated the potential of decoderonly large language models (LLMs) for automatic speech recognition (ASR). However, enabling streaming recognition within this framework remains a challenge. In this work, we propose a novel streaming ASR approach that integrates a read/write policy network with monotonic chunkwise attention (MoChA) to dynamically segment speech embeddings. These segments are interleaved with label sequences during training, enabling seamless integration with the LLM. During inference, the audio stream is buffered until the MoChA module triggers a read signal, at which point the buffered segment together with the previous token is fed into the LLM for the next token prediction. We also introduce a minimal-latency training objective to guide the policy network toward accurate segmentation boundaries. Furthermore, we adopt a joint training strategy in which a non-streaming LLM-ASR model and our streaming model share parameters. Experiments on the AISHELL-1 and AISHELL-2 Mandarin benchmarks demonstrate that our method consistently outperforms recent streaming ASR baselines, achieving character error rates of 5.1% and 5.5%, respectively. The latency optimization results in a 62.5% reduction in average token generation delay with negligible impact on recognition accuracy
TAPO: Task-Referenced Adaptation for Prompt Optimization
Prompt engineering can significantly improve the performance of large language models (LLMs), with automated prompt optimization (APO) gaining significant attention due to the time-consuming and laborious nature of manual prompt design. However, much of the existing work in APO overlooks task-specific characteristics, resulting in prompts that lack domain specificity and are not well-suited for task-specific optimization. In this paper, we introduce TAPO, a multitask-aware prompt optimization framework composed of three key modules. First, a task-aware metric selection module is proposed to enhance task-specific prompt generation capabilities. Second, we present a multi-metrics evaluation module to jointly evaluate prompts from multiple perspectives. Third, an evolution-based optimization framework is introduced for automatic prompt refinement, which improves adaptability across various tasks. Extensive experiments on six datasets demonstrate the effectiveness of our approach, and our code is publicly available.
HESSO: Towards Automatic Efficient and User Friendly Any Neural Network Training and Pruning
Structured pruning is one of the most popular approaches to effectively compress the heavy deep neural networks (DNNs) into compact sub-networks while retaining performance. The existing methods suffer from multi-stage procedures along with significant engineering efforts and human expertise. The Only-Train-Once (OTO) series has been recently proposed to resolve the many pain points by streamlining the workflow by automatically conducting (i) search space generation, (ii) structured sparse optimization, and (iii) sub-network construction. However, the built-in sparse optimizers in the OTO series, i.e., the Half-Space Projected Gradient (HSPG) family, have limitations that require hyper-parameter tuning and the implicit controls of the sparsity exploration, consequently requires intervening by human expertise. To address such limitations, we propose a Hybrid Efficient Structured Sparse Optimizer (HESSO). HESSO could automatically and efficiently train a DNN to produce a high-performing subnetwork. Meanwhile, it is almost tuning-free and enjoys user-friendly integration for generic training applications. To address another common issue of irreversible performance collapse observed in pruning DNNs, we further propose a Corrective Redundant Identification Cycle (CRIC) for reliably identifying indispensable structures. We numerically demonstrate the efficacy of HESSO and its enhanced version HESSO-CRIC on a variety of applications ranging from computer vision to natural language processing, including large language model. The numerical results showcase that HESSO can achieve competitive even superior performance to varying state-of-the-arts and support most DNN architectures. Meanwhile, CRIC can effectively prevent the irreversible performance collapse and further enhance the performance of HESSO on certain applications. The code is available at https://github.com/microsoft/only_train_once.
Quality Diversity through Human Feedback: Towards Open-Ended Diversity-Driven Optimization
Reinforcement Learning from Human Feedback (RLHF) has shown potential in qualitative tasks where easily defined performance measures are lacking. However, there are drawbacks when RLHF is commonly used to optimize for average human preferences, especially in generative tasks that demand diverse model responses. Meanwhile, Quality Diversity (QD) algorithms excel at identifying diverse and high-quality solutions but often rely on manually crafted diversity metrics. This paper introduces Quality Diversity through Human Feedback (QDHF), a novel approach that progressively infers diversity metrics from human judgments of similarity among solutions, thereby enhancing the applicability and effectiveness of QD algorithms in complex and open-ended domains. Empirical studies show that QDHF significantly outperforms state-of-the-art methods in automatic diversity discovery and matches the efficacy of QD with manually crafted diversity metrics on standard benchmarks in robotics and reinforcement learning. Notably, in open-ended generative tasks, QDHF substantially enhances the diversity of text-to-image generation from a diffusion model and is more favorably received in user studies. We conclude by analyzing QDHF's scalability, robustness, and quality of derived diversity metrics, emphasizing its strength in open-ended optimization tasks. Code and tutorials are available at https://liding.info/qdhf.
Reinforcement Learning from Automatic Feedback for High-Quality Unit Test Generation
Software testing is a crucial aspect of software development, and the creation of high-quality tests that adhere to best practices is essential for effective maintenance. Recently, Large Language Models (LLMs) have gained popularity for code generation, including the automated creation of test cases. However, these LLMs are often trained on vast amounts of publicly available code, which may include test cases that do not adhere to best practices and may even contain test smells (anti-patterns). To address this issue, we propose a novel technique called Reinforcement Learning from Static Quality Metrics (RLSQM). To begin, we analyze the anti-patterns generated by the LLM and show that LLMs can generate undesirable test smells. Thus, we train specific reward models for each static quality metric, then utilize Proximal Policy Optimization (PPO) to train models for optimizing a single quality metric at a time. Furthermore, we amalgamate these rewards into a unified reward model aimed at capturing different best practices and quality aspects of tests. By comparing RL-trained models with those trained using supervised learning, we provide insights into how reliably utilize RL to improve test generation quality and into the effects of various training strategies. Our experimental results demonstrate that the RL-optimized model consistently generated high-quality test cases compared to the base LLM, improving the model by up to 21%, and successfully generates nearly 100% syntactically correct code. RLSQM also outperformed GPT-4 on four out of seven metrics. This represents a significant step towards enhancing the overall efficiency and reliability of software testing through Reinforcement Learning and static quality metrics. Our data are available at this link: https://figshare.com/s/ded476c8d4c221222849.
Denotationally Correct, Purely Functional, Efficient Reverse-mode Automatic Differentiation
Reverse-mode differentiation is used for optimization, but it introduces references, which break the purity of the underlying programs, making them notoriously harder to optimize. We present a reverse-mode differentiation on a purely functional language with array operations. It is the first one to deliver a provably efficient, purely functional, and denotationally correct reverse-mode differentiation. We show that our transformation is semantically correct and verifies the cheap gradient principle. Inspired by PROPs and compilation to categories, we introduce a novel intermediate representation that we call 'unary form'. Our reverse-mode transformation is factored as a compilation scheme through this intermediate representation. We obtain provably efficient gradients by performing general partial evaluation optimizations after our reverse-mode transformation, as opposed to manually derived ones. For simple first-order programs, the obtained output programs resemble static-single-assignment (SSA) code. We emphasize the modularity of our approach and show how our language can easily be enriched with more optimized primitives, as required for some speed-ups in practice.
Locality-Aware Automatic Differentiation on the GPU for Mesh-Based Computations
We present a high-performance system for automatic differentiation (AD) of functions defined on triangle meshes that exploits the inherent sparsity and locality of mesh-based energy functions to achieve fast gradient and Hessian computation on the GPU. Our system is designed around per-element forward-mode differentiation, enabling all local computations to remain in GPU registers or shared memory. Unlike reverse-mode approaches that construct and traverse global computation graphs, our method performs differentiation on the fly, minimizing memory traffic and avoiding global synchronization. Our programming model allows users to define local energy terms while the system handles parallel evaluation, derivative computation, and sparse Hessian assembly. We benchmark our system on a range of applications--cloth simulation, surface parameterization, mesh smoothing, and spherical manifold optimization. We achieve a geometric mean speedup of 6.2x over optimized PyTorch implementations for second-order derivatives, and 2.76x speedup for Hessian-vector products. For first-order derivatives, our system is 6.38x, 2.89x, and 1.98x faster than Warp, JAX, and Dr.JIT, respectively, while remaining on par with hand-written derivatives.
Attribute-conditioned Layout GAN for Automatic Graphic Design
Modeling layout is an important first step for graphic design. Recently, methods for generating graphic layouts have progressed, particularly with Generative Adversarial Networks (GANs). However, the problem of specifying the locations and sizes of design elements usually involves constraints with respect to element attributes, such as area, aspect ratio and reading-order. Automating attribute conditional graphic layouts remains a complex and unsolved problem. In this paper, we introduce Attribute-conditioned Layout GAN to incorporate the attributes of design elements for graphic layout generation by forcing both the generator and the discriminator to meet attribute conditions. Due to the complexity of graphic designs, we further propose an element dropout method to make the discriminator look at partial lists of elements and learn their local patterns. In addition, we introduce various loss designs following different design principles for layout optimization. We demonstrate that the proposed method can synthesize graphic layouts conditioned on different element attributes. It can also adjust well-designed layouts to new sizes while retaining elements' original reading-orders. The effectiveness of our method is validated through a user study.
G-LNS: Generative Large Neighborhood Search for LLM-Based Automatic Heuristic Design
While Large Language Models (LLMs) have recently shown promise in Automated Heuristic Design (AHD), existing approaches typically formulate AHD around constructive priority rules or parameterized local search guidance, thereby restricting the search space to fixed heuristic forms. Such designs offer limited capacity for structural exploration, making it difficult to escape deep local optima in complex Combinatorial Optimization Problems (COPs). In this work, we propose G-LNS, a generative evolutionary framework that extends LLM-based AHD to the automated design of Large Neighborhood Search (LNS) operators. Unlike prior methods that evolve heuristics in isolation, G-LNS leverages LLMs to co-evolve tightly coupled pairs of destroy and repair operators. A cooperative evaluation mechanism explicitly captures their interaction, enabling the discovery of complementary operator logic that jointly performs effective structural disruption and reconstruction. Extensive experiments on challenging COP benchmarks, such as Traveling Salesman Problems (TSP) and Capacitated Vehicle Routing Problems (CVRP), demonstrate that G-LNS significantly outperforms LLM-based AHD methods as well as strong classical solvers. The discovered heuristics not only achieve near-optimal solutions with reduced computational budgets but also exhibit robust generalization across diverse and unseen instance distributions.
The Unreasonable Effectiveness of Eccentric Automatic Prompts
Large Language Models (LLMs) have demonstrated remarkable problem-solving and basic mathematics abilities. However, their efficacy is highly contingent on the formulation of the prompt. This study endeavors to quantify the influence of incorporating "positive thinking" into the system message of the prompt, then compare that to systematic prompt optimization. We assess the performance of 60 combinations of system message snippets, tested with and without Chain of Thought prompting, across three models with parameters ranging from 7 to 70 billion on the GSM8K dataset. Our findings reveal that results do not universally generalize across models. In most instances, the inclusion of "positive thinking" prompts positively affected model performance. Notably, however, Llama2-70B exhibited an exception when not utilizing Chain of Thought, as the optimal system message was found to be none at all. Given the combinatorial complexity, and thus computation time, of experimenting with hand-tuning prompts for large black-box models, we then compared the performance of the best "positive thinking" prompt against the output of systematic prompt optimization. We show that employing an automated prompt optimizer emerges as the most effective method for enhancing performance, even when working with smaller open-source models. Additionally, our findings reveal that the highest-scoring, automatically-optimized prompt exhibits a degree of peculiarity far beyond expectations.
TIPO: Text to Image with Text Presampling for Prompt Optimization
TIPO (Text to Image with text pre-sampling for Prompt Optimization) is an innovative framework designed to enhance text-to-image (T2I) generation by language model (LM) for automatic prompt engineering. By refining and extending user-provided prompts, TIPO bridges the gap between simple inputs and the detailed prompts required for high-quality image generation. Unlike previous approaches that rely on Large Language Models (LLMs) or reinforcement learning (RL), TIPO adjusts user input prompts with the distribution of a trained prompt dataset, eliminating the need for complex runtime cost via lightweight model. This pre-sampling approach enables efficient and scalable prompt optimization, grounded in the model's training distribution. Experimental results demonstrate TIPO's effectiveness in improving aesthetic scores, reducing image corruption, and better aligning generated images with dataset distributions. These findings highlight the critical role of prompt engineering in T2I systems and open avenues for broader applications of automatic prompt refinement.
BFS-Prover: Scalable Best-First Tree Search for LLM-based Automatic Theorem Proving
Recent advancements in large language models (LLMs) have spurred growing interest in automatic theorem proving using Lean4, where effective tree search methods are crucial for navigating proof search spaces. While the existing approaches primarily rely on value functions and Monte Carlo Tree Search (MCTS), the potential of simpler methods like Best-First Search (BFS) remains underexplored. This paper investigates whether BFS can achieve competitive performance in large-scale theorem proving tasks. We present BFS-Prover, a scalable expert iteration framework, featuring three key innovations. First, we implement strategic data filtering at each expert iteration round, excluding problems solvable via beam search node expansion to focus on harder cases. Second, we improve the sample efficiency of BFS through Direct Preference Optimization (DPO) applied to state-tactic pairs automatically annotated with compiler error feedback, refining the LLM's policy to prioritize productive expansions. Third, we employ length normalization in BFS to encourage exploration of deeper proof paths. BFS-Prover achieves a score of 71.31 on the MiniF2F test set and therefore challenges the perceived necessity of complex tree search methods, demonstrating that BFS can achieve competitive performance when properly scaled.
Progressive Text-to-3D Generation for Automatic 3D Prototyping
Text-to-3D generation is to craft a 3D object according to a natural language description. This can significantly reduce the workload for manually designing 3D models and provide a more natural way of interaction for users. However, this problem remains challenging in recovering the fine-grained details effectively and optimizing a large-size 3D output efficiently. Inspired by the success of progressive learning, we propose a Multi-Scale Triplane Network (MTN) and a new progressive learning strategy. As the name implies, the Multi-Scale Triplane Network consists of four triplanes transitioning from low to high resolution. The low-resolution triplane could serve as an initial shape for the high-resolution ones, easing the optimization difficulty. To further enable the fine-grained details, we also introduce the progressive learning strategy, which explicitly demands the network to shift its focus of attention from simple coarse-grained patterns to difficult fine-grained patterns. Our experiment verifies that the proposed method performs favorably against existing methods. For even the most challenging descriptions, where most existing methods struggle to produce a viable shape, our proposed method consistently delivers. We aspire for our work to pave the way for automatic 3D prototyping via natural language descriptions.
Not All Semantics are Created Equal: Contrastive Self-supervised Learning with Automatic Temperature Individualization
In this paper, we aim to optimize a contrastive loss with individualized temperatures in a principled and systematic manner for self-supervised learning. The common practice of using a global temperature parameter tau ignores the fact that ``not all semantics are created equal", meaning that different anchor data may have different numbers of samples with similar semantics, especially when data exhibits long-tails. First, we propose a new robust contrastive loss inspired by distributionally robust optimization (DRO), providing us an intuition about the effect of tau and a mechanism for automatic temperature individualization. Then, we propose an efficient stochastic algorithm for optimizing the robust contrastive loss with a provable convergence guarantee without using large mini-batch sizes. Theoretical and experimental results show that our algorithm automatically learns a suitable tau for each sample. Specifically, samples with frequent semantics use large temperatures to keep local semantic structures, while samples with rare semantics use small temperatures to induce more separable features. Our method not only outperforms prior strong baselines (e.g., SimCLR, CLIP) on unimodal and bimodal datasets with larger improvements on imbalanced data but also is less sensitive to hyper-parameters. To our best knowledge, this is the first methodical approach to optimizing a contrastive loss with individualized temperatures.
Aligning Diffusion Language Models via Unpaired Preference Optimization
Diffusion language models (dLLMs) are an emerging alternative to autoregressive (AR) generators, but aligning them to human preferences is challenging because sequence log-likelihoods are intractable and pairwise preference data are costly to collect. We introduce ELBO-KTO, which combines an ELBO surrogate for diffusion log-likelihoods with a prospect-theoretic, unpaired preference objective (Kahneman Tversky Optimization, KTO). We analyze the bias and variance induced by the ELBO substitution and employ variance-reduction practices that stabilize gradients during training. Applied to LLaDA-8B-Instruct, ELBO-KTO yields 65.9% and 62.3% adjusted win rates on kto-mix-14k and UltraFeedback-Binary, respectively, versus the base model under an automatic LLM judge. Across downstream tasks, including GSM8K, MMLU, and additional reasoning/knowledge benchmarks, ELBO-KTO trained on UltraFeedback-Binary performs on par with or better than the base model under identical decoding. This establishes unpaired preference optimization as a viable alternative to pairwise alignment in diffusion LLMs.
Monte Carlo Tree Search for Comprehensive Exploration in LLM-Based Automatic Heuristic Design
Handcrafting heuristics for solving complex planning tasks (e.g., NP-hard combinatorial optimization (CO) problems) is a common practice but requires extensive domain knowledge. Recently, Large Language Model (LLM)-based automatic heuristics design (AHD) methods have shown promise in generating high-quality heuristics without manual intervention. Existing LLM-based AHD methods employ a population to maintain a fixed number of top-performing LLM-generated heuristics and introduce evolutionary computation (EC) to enhance the population iteratively. However, the population-based procedure brings greedy properties, often resulting in convergence to local optima. Instead, to more comprehensively explore the space of heuristics, we propose using Monte Carlo Tree Search (MCTS) for LLM-based heuristic evolution while preserving all LLM-generated heuristics in a tree structure. With a novel thought-alignment process and an exploration-decay technique, the proposed MCTS-AHD method delivers significantly higher-quality heuristics on various complex tasks. Our code is available at https://github.com/zz1358m/MCTS-AHD-master.
Say Goodbye to RNN-T Loss: A Novel CIF-based Transducer Architecture for Automatic Speech Recognition
RNN-T models are widely used in ASR, which rely on the RNN-T loss to achieve length alignment between input audio and target sequence. However, the implementation complexity and the alignment-based optimization target of RNN-T loss lead to computational redundancy and a reduced role for predictor network, respectively. In this paper, we propose a novel model named CIF-Transducer (CIF-T) which incorporates the Continuous Integrate-and-Fire (CIF) mechanism with the RNN-T model to achieve efficient alignment. In this way, the RNN-T loss is abandoned, thus bringing a computational reduction and allowing the predictor network a more significant role. We also introduce Funnel-CIF, Context Blocks, Unified Gating and Bilinear Pooling joint network, and auxiliary training strategy to further improve performance. Experiments on the 178-hour AISHELL-1 and 10000-hour WenetSpeech datasets show that CIF-T achieves state-of-the-art results with lower computational overhead compared to RNN-T models.
UniPoll: A Unified Social Media Poll Generation Framework via Multi-Objective Optimization
Social media platforms are essential outlets for expressing opinions, providing a valuable resource for capturing public viewpoints via text analytics. However, for many users, passive browsing is their preferred mode of interaction, leading to their perspectives being overlooked by text analytics methods. Meanwhile, social media polls have emerged as a practical feature for gathering public opinions, allowing post authors to pose questions with pre-defined answer options for readers to vote on. To broaden the benefits of polls for posts without them, this article explores the automatic generation of a poll from a social media post by leveraging cutting-edge natural language generation (NLG) techniques. However, existing NLG techniques, primarily developed for general-domain texts, may be ineffective when applied to noisy social media data, which often feature implicit context-question-answer relations. To tackle these challenges, we enrich a post context with its comments and propose a novel unified poll generation framework called UniPoll. It employs prompt tuning with multi-objective optimization to bolster the connection exploration between contexts (posts and comments) and polls (questions and answers). Experimental comparisons on a large-scale Chinese Weibo dataset show that UniPoll significantly outperforms T5, the state-of-the-art NLG model, which generates question and answer separately. Comprehensive qualitative and quantitative analyses further underscore the superiority of UniPoll through various evaluation lenses.
Contrastive Decoding: Open-ended Text Generation as Optimization
Given a language model (LM), maximum probability is a poor decoding objective for open-ended generation, because it produces short and repetitive text. On the other hand, sampling can often produce incoherent text that drifts from the original topics. We propose contrastive decoding (CD), a reliable decoding approach that optimizes a contrastive objective subject to a plausibility constraint. The contrastive objective returns the difference between the likelihood under a large LM (called the expert, e.g. OPT-13B) and a small LM (called the amateur, e.g. OPT-125M), and the constraint ensures that the outputs are plausible. CD is inspired by the fact that the failures of larger LMs (e.g., repetition, incoherence) are even more prevalent in smaller LMs, and that this difference signals which texts should be preferred. CD requires zero additional training, and produces higher quality text than decoding from the larger LM alone. It also works across model scales (OPT-13B and GPT2-1.5B) and significantly outperforms four strong decoding algorithms (e.g., nucleus, top-k) in automatic and human evaluations across wikipedia, news and story domains.
RayTracer.jl: A Differentiable Renderer that supports Parameter Optimization for Scene Reconstruction
In this paper, we present RayTracer.jl, a renderer in Julia that is fully differentiable using source-to-source Automatic Differentiation (AD). This means that RayTracer not only renders 2D images from 3D scene parameters, but it can be used to optimize for model parameters that generate a target image in a Differentiable Programming (DP) pipeline. We interface our renderer with the deep learning library Flux for use in combination with neural networks. We demonstrate the use of this differentiable renderer in rendering tasks and in solving inverse graphics problems.
MARS: A Multi-Agent Framework Incorporating Socratic Guidance for Automated Prompt Optimization
The basic question-answering format of large language models involves inputting a prompt and receiving a response, and the quality of the prompt directly impacts the effectiveness of the response. Automated Prompt Optimization (APO) aims to break free from the cognitive biases of manually designed prompts and explores a broader design space for prompts. However, existing APO methods suffer from limited flexibility of fixed templates and inefficient search in prompt spaces as key issues. To this end, we propose a Multi-Agent framework Incorporating Socratic guidance (MARS), which utilizes multi-agent fusion technology for automatic planning, with gradual continuous optimization and evaluation. Specifically, MARS comprises seven agents, each with distinct functionalities, which autonomously use the Planner to devise an optimization path that ensures flexibility. Additionally, it employs a Teacher-Critic-Student Socratic dialogue pattern to iteratively optimize the prompts while conducting effective search. We conduct extensive experiments on various datasets to validate the effectiveness of our method, and perform additional analytical experiments to assess the model's advancement as well as the interpretability.
Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization
Generative multimodal content is increasingly prevalent in much of the content creation arena, as it has the potential to allow artists and media personnel to create pre-production mockups by quickly bringing their ideas to life. The generation of audio from text prompts is an important aspect of such processes in the music and film industry. Many of the recent diffusion-based text-to-audio models focus on training increasingly sophisticated diffusion models on a large set of datasets of prompt-audio pairs. These models do not explicitly focus on the presence of concepts or events and their temporal ordering in the output audio with respect to the input prompt. Our hypothesis is focusing on how these aspects of audio generation could improve audio generation performance in the presence of limited data. As such, in this work, using an existing text-to-audio model Tango, we synthetically create a preference dataset where each prompt has a winner audio output and some loser audio outputs for the diffusion model to learn from. The loser outputs, in theory, have some concepts from the prompt missing or in an incorrect order. We fine-tune the publicly available Tango text-to-audio model using diffusion-DPO (direct preference optimization) loss on our preference dataset and show that it leads to improved audio output over Tango and AudioLDM2, in terms of both automatic- and manual-evaluation metrics.
J4R: Learning to Judge with Equivalent Initial State Group Relative Policy Optimization
To keep pace with the increasing pace of large language models (LLM) development, model output evaluation has transitioned away from time-consuming human evaluation to automatic evaluation, where LLMs themselves are tasked with assessing and critiquing other model outputs. LLM-as-judge models are a class of generative evaluators that excel in evaluating relatively simple domains, like chat quality, but struggle in reasoning intensive domains where model responses contain more substantive and challenging content. To remedy existing judge shortcomings, we explore training judges with reinforcement learning (RL). We make three key contributions: (1) We propose the Equivalent Initial State Group Relative Policy Optimization (EIS-GRPO) algorithm, which allows us to train our judge to be robust to positional biases that arise in more complex evaluation settings. (2) We introduce ReasoningJudgeBench, a benchmark that evaluates judges in diverse reasoning settings not covered by prior work. (3) We train Judge for Reasoning (J4R), a 7B judge trained with EIS-GRPO that outperforms GPT-4o and the next best small judge by 6.7% and 9%, matching or exceeding the performance of larger GRPO-trained judges on both JudgeBench and ReasoningJudgeBench.
Is Reinforcement Learning (Not) for Natural Language Processing: Benchmarks, Baselines, and Building Blocks for Natural Language Policy Optimization
We tackle the problem of aligning pre-trained large language models (LMs) with human preferences. If we view text generation as a sequential decision-making problem, reinforcement learning (RL) appears to be a natural conceptual framework. However, using RL for LM-based generation faces empirical challenges, including training instability due to the combinatorial action space, as well as a lack of open-source libraries and benchmarks customized for LM alignment. Thus, a question rises in the research community: is RL a practical paradigm for NLP? To help answer this, we first introduce an open-source modular library, RL4LMs (Reinforcement Learning for Language Models), for optimizing language generators with RL. The library consists of on-policy RL algorithms that can be used to train any encoder or encoder-decoder LM in the HuggingFace library (Wolf et al. 2020) with an arbitrary reward function. Next, we present the GRUE (General Reinforced-language Understanding Evaluation) benchmark, a set of 6 language generation tasks which are supervised not by target strings, but by reward functions which capture automated measures of human preference.GRUE is the first leaderboard-style evaluation of RL algorithms for NLP tasks. Finally, we introduce an easy-to-use, performant RL algorithm, NLPO (Natural Language Policy Optimization)} that learns to effectively reduce the combinatorial action space in language generation. We show 1) that RL techniques are generally better than supervised methods at aligning LMs to human preferences; and 2) that NLPO exhibits greater stability and performance than previous policy gradient methods (e.g., PPO (Schulman et al. 2017)), based on both automatic and human evaluations.
