propella-1: Multi-Property Document Annotation for LLM Data Curation at Scale
Abstract
Since FineWeb-Edu, data curation for LLM pretraining has predominantly relied on single scalar quality scores produced by small classifiers. A single score conflates multiple quality dimensions, prevents flexible filtering, and offers no interpretability. We introduce propella-1, a family of small multilingual LLMs (0.6B, 1.7B, 4B parameters) that annotate text documents across 18 properties organized into six categories: core content, classification, quality and value, audience and purpose, safety and compliance, and geographic relevance. The models support 57 languages and produce structured JSON annotations conforming to a predefined schema. Evaluated against a frontier commercial LLM as a reference annotator, the 4B model achieves higher agreement than much larger general-purpose models. We release propella-annotations, a dataset of over three billion document annotations covering major pretraining corpora including data from FineWeb-2, FinePDFs, HPLT 3.0, and Nemotron-CC. Using these annotations, we present a multi-dimensional compositional analysis of widely used pretraining datasets, revealing substantial differences in quality, reasoning depth, and content composition that single-score approaches cannot capture. All model weights and annotations are released under permissive, commercial-use licenses.
Models citing this paper 1
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper