NAAMSE: Framework for Evolutionary Security Evaluation of Agents
Abstract
Evolutionary framework for AI agent security evaluation that uses genetic prompt mutation and behavioral scoring to identify vulnerabilities missed by traditional methods.
AI agents are increasingly deployed in production, yet their security evaluations remain bottlenecked by manual red-teaming or static benchmarks that fail to model adaptive, multi-turn adversaries. We propose NAAMSE, an evolutionary framework that reframes agent security evaluation as a feedback-driven optimization problem. Our system employs a single autonomous agent that orchestrates a lifecycle of genetic prompt mutation, hierarchical corpus exploration, and asymmetric behavioral scoring. By using model responses as a fitness signal, the framework iteratively compounds effective attack strategies while simultaneously ensuring "benign-use correctness", preventing the degenerate security of blanket refusal. Our experiments on Gemini 2.5 Flash demonstrate that evolutionary mutation systematically amplifies vulnerabilities missed by one-shot methods, with controlled ablations revealing that the synergy between exploration and targeted mutation uncovers high-severity failure modes. We show that this adaptive approach provides a more realistic and scalable assessment of agent robustness in the face of evolving threats. The code for NAAMSE is open source and available at https://github.com/HASHIRU-AI/NAAMSE.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper