Least but not Last: Fine-tuning Intermediate Principal Components for Better Performance-Forgetting Trade-Offs
Abstract
Low-Rank Adaptation methods face challenges in balancing performance gains with knowledge retention, but a comprehensive analysis reveals that fine-tuning intermediate components provides better trade-offs and robustness to high learning rates.
Low-Rank Adaptation (LoRA) methods have emerged as crucial techniques for adapting large pre-trained models to downstream tasks under computational and memory constraints. However, they face a fundamental challenge in balancing task-specific performance gains against catastrophic forgetting of pre-trained knowledge, where existing methods provide inconsistent recommendations. This paper presents a comprehensive analysis of the performance-forgetting trade-offs inherent in low-rank adaptation using principal components as initialization. Our investigation reveals that fine-tuning intermediate components leads to better balance and show more robustness to high learning rates than first (PiSSA) and last (MiLoRA) components in existing work. Building on these findings, we provide a practical approach for initialization of LoRA that offers superior trade-offs. We demonstrate in a thorough empirical study on a variety of computer vision and NLP tasks that our approach improves accuracy and reduces forgetting, also in continual learning scenarios.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper