Governance at the Edge of Architecture: Regulating NeuroAI and Neuromorphic Systems
Abstract
Current AI governance frameworks designed for traditional neural networks are inadequate for NeuroAI systems based on spiking neural networks and neuromorphic hardware, requiring new assurance methods that align with brain-inspired computation principles.
Current AI governance frameworks, including regulatory benchmarks for accuracy, latency, and energy efficiency, are built for static, centrally trained artificial neural networks on von Neumann hardware. NeuroAI systems, embodied in neuromorphic hardware and implemented via spiking neural networks, break these assumptions. This paper examines the limitations of current AI governance frameworks for NeuroAI, arguing that assurance and audit methods must co-evolve with these architectures, aligning traditional regulatory metrics with the physics, learning dynamics, and embodied efficiency of brain-inspired computation to enable technically grounded assurance.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper