Physics-informed Diffusion Generation for Geomagnetic Map Interpolation
Abstract
A physics-informed diffusion generation framework is proposed for interpolating incomplete geomagnetic maps by incorporating physical constraints and noise reduction strategies.
Geomagnetic map interpolation aims to infer unobserved geomagnetic data at spatial points, yielding critical applications in navigation and resource exploration. However, existing methods for scattered data interpolation are not specifically designed for geomagnetic maps, which inevitably leads to suboptimal performance due to detection noise and the laws of physics. Therefore, we propose a Physics-informed Diffusion Generation framework~(PDG) to interpolate incomplete geomagnetic maps. First, we design a physics-informed mask strategy to guide the diffusion generation process based on a local receptive field, effectively eliminating noise interference. Second, we impose a physics-informed constraint on the diffusion generation results following the kriging principle of geomagnetic maps, ensuring strict adherence to the laws of physics. Extensive experiments and in-depth analyses on four real-world datasets demonstrate the superiority and effectiveness of each component of PDG.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper