File size: 29,040 Bytes
6bb0065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
#
import sys
#print('sys.path: ___ ', sys.path)
#print(f"Current Python Executable: {sys.executable}")
### dynamo warning
import warnings
# Ignore FutureWarning: prims_common.check, Online Softmax
warnings.filterwarnings("ignore", category=FutureWarning, module='torch._inductor.lowering')
warnings.filterwarnings("ignore", message=".*Online softmax is disabled on the fly.*", category=UserWarning)
warnings.filterwarnings("ignore", message=".*Our suggested max number of worker in current system is 1.*", category=UserWarning)
warnings.filterwarnings("ignore", message=".*will be initialized from a multivariate normal distribution.*")
warnings.filterwarnings("ignore", message=".*that differ from the model config and generation config.*", category=UserWarning)
warnings.filterwarnings("ignore", message=".*torch.backends.cudnn.conv.fp32_precision = 'tf32' or torch..*", category=UserWarning)
import torch
torch.backends.cuda.matmul.fp32_precision = 'tf32'
# import wandb
import os
torch.set_num_threads(1)
os.environ["OMP_NUM_THREADS"]="1"
os.environ["MKL_NUM_THREADS"]="1"
import torch
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"PyTorch built with CUDA version: {torch.version.cuda}")
import yaml
#from peft import LoraConfig, get_peft_model_state_dict
from torch.utils.data import DataLoader
import time
from datetime import datetime
import math
from typing import List, Tuple
# import prodigyopt
###
import copy
from dataclasses import field, dataclass, asdict
from typing import Sequence, Literal, Dict
import transformers
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer
from transformers import Trainer
from transformers.modeling_utils import *
from transformers.trainer import _is_peft_model
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from transformers.data.data_collator import DataCollator
from transformers.training_args import TrainingArguments
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_callback import TrainerCallback
from transformers.trainer_utils import EvalPrediction
from torch.utils.data import Dataset, IterableDataset
from datasets import load_dataset
##
#from ..pipeline.flux_omini import transformer_forward, encode_images
# from ...omini.rotation import RotationTuner, RotationConfig
from rpeft.rotation import RotationTuner, RotationConfig
from rpeft import get_peft_model, PeftModel
from .config import MainConfig, convert_to_trainer_args
import pyrallis
from omegaconf import OmegaConf
import torch.optim as optim
import wandb
from torch.nn.utils.rnn import pad_sequence
IGNORE_INDEX = -100
PROMPT = (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
)
def get_rank():
try:
rank = int(os.environ.get("LOCAL_RANK"))
except:
rank = 0
return rank
def get_config():
config_path = os.environ.get("OMINI_CONFIG")
assert config_path is not None, "Please set the OMINI_CONFIG environment variable"
with open(config_path, "r") as f:
config = yaml.safe_load(f)
return config
def init_wandb(wandb_config, run_name):
import wandb
try:
assert os.environ.get("WANDB_API_KEY") is not None
wandb.init(
project=wandb_config["project"],
name=run_name,
config={},
)
except Exception as e:
print("Failed to initialize WanDB:", e)
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
)
for text in strings
]
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def preprocess(
sources: Sequence[str],
targets: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
"""Preprocess the data by tokenizing."""
examples = [s + t for s, t in zip(sources, targets)]
examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
input_ids = examples_tokenized["input_ids"]
labels = copy.deepcopy(input_ids)
for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
label[:source_len] = IGNORE_INDEX
return dict(input_ids=input_ids, labels=labels)
# @dataclass
# class DataCollatorForSupervisedDataset():
# """Collate examples for supervised fine-tuning."""
# tokenizer: transformers.PreTrainedTokenizer
# max_length: int = field(default=512)
# mode: str = field(default="fixed") # dynamic -> dynamo
# def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
# if self.mode == 'dynamic':
# input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
# input_ids = [torch.tensor(x) for x in input_ids]
# input_ids = torch.nn.utils.rnn.pad_sequence(
# input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
# )
# labels = [torch.tensor(x) for x in labels]
# labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
# return dict(
# input_ids=input_ids,
# labels=labels,
# attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
# )
# elif self.mode == 'fixed':
# input_ids = [torch.tensor(x["input_ids"][:self.max_length]) for x in instances]
# input_ids = torch.stack([
# torch.nn.functional.pad(x, (0, self.max_length - x.size(0)), value=self.tokenizer.pad_token_id)
# for x in input_ids
# ])
# # Labels
# labels = [torch.tensor(x["labels"][:self.max_length]) for x in instances]
# labels = torch.stack([
# torch.nn.functional.pad(x, (0, self.max_length - x.size(0)), value=IGNORE_INDEX)
# for x in labels
# ])
# return dict(
# input_ids=input_ids,
# labels=labels,
# attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
# )
# else:
# raise NotImplementedError
# @dataclass
# class DataCollatorForSupervisedDataset(object):
# tokenizer: transformers.PreTrainedTokenizer
# max_length: int = field(default=512)
# mode: str = field(default="fixed") # "dynamic" or "fixed"
# def _pad_to_length(self, tensors: Sequence[torch.Tensor], pad_value: int, target_len: int):
# """Pad a list of 1D tensors to target_len (int) and stack -> (B, target_len)."""
# batch_size = len(tensors)
# out = torch.full((batch_size, target_len), pad_value, dtype=tensors[0].dtype)
# for i, t in enumerate(tensors):
# L = min(t.size(0), target_len)
# out[i, :L] = t[:L]
# return out
# def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
# # Collect raw sequences (lists or tensors)
# input_seqs = [torch.tensor(x["input_ids"], dtype=torch.long) for x in instances]
# label_seqs = [torch.tensor(x["labels"], dtype=torch.long) for x in instances]
# if self.mode == "dynamic":
# # pad to the max length present in this batch (<= self.max_length)
# batch_max_len = min(max([s.size(0) for s in input_seqs]), self.max_length)
# input_ids = self._pad_to_length(input_seqs, pad_value=self.tokenizer.pad_token_id, target_len=batch_max_len)
# labels = self._pad_to_length(label_seqs, pad_value=IGNORE_INDEX, target_len=batch_max_len)
# elif self.mode == "fixed":
# # always pad/truncate to self.max_length
# input_ids = self._pad_to_length(input_seqs, pad_value=self.tokenizer.pad_token_id, target_len=self.max_length)
# labels = self._pad_to_length(label_seqs, pad_value=IGNORE_INDEX, target_len=self.max_length)
# else:
# raise NotImplementedError(f"Unknown mode: {self.mode}")
# attention_mask = input_ids.ne(self.tokenizer.pad_token_id).long()
# return {
# "input_ids": input_ids,
# "labels": labels,
# "attention_mask": attention_mask
# }
@dataclass
class DataCollatorForSupervisedDataset():
tokenizer: transformers.PreTrainedTokenizer
max_length: int = field(default=512)
mode: str = field(default="fixed") # "dynamic" or "fixed"
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
# Extract inputs and labels
# Assuming instances is a list of dicts like {'input_ids': [...], 'labels': [...]}
input_ids_list = [torch.tensor(x["input_ids"], dtype=torch.long) for x in instances]
labels_list = [torch.tensor(x["labels"], dtype=torch.long) for x in instances]
# 1. Determine padding logic
if self.mode == "dynamic":
# Dynamic padding: pad to the longest sequence in the batch
# But cap it at self.max_length to prevent OOM
batch_max_len = max([len(x) for x in input_ids_list])
target_len = min(batch_max_len, self.max_length)
else:
# Fixed padding: always pad to max_length
target_len = self.max_length
# 2. Helper to pad and truncate
def pad_and_truncate(tensors, padding_value):
# First, pad everything using PyTorch's optimized utility (batch_first=True)
padded = pad_sequence(tensors, batch_first=True, padding_value=padding_value)
# Handle truncation/extending to exact target_len
curr_len = padded.shape[1]
if curr_len > target_len:
# Truncate if too long (rare if filtered beforehand)
return padded[:, :target_len]
elif curr_len < target_len:
# Pad more if shorter than target_len (happens in fixed mode)
diff = target_len - curr_len
padding = torch.full((padded.shape[0], diff), padding_value, dtype=padded.dtype)
return torch.cat([padded, padding], dim=1)
else:
return padded
# 3. Apply padding
# Critical: tokenizer.pad_token_id must NOT be None here
if self.tokenizer.pad_token_id is None:
raise ValueError("Tokenizer.pad_token_id is None. Please set it to eos_token_id or unk_token_id.")
input_ids = pad_and_truncate(input_ids_list, self.tokenizer.pad_token_id)
labels = pad_and_truncate(labels_list, IGNORE_INDEX)
# 4. Create Attention Mask explicitly
# .ne() creates Bools, .long() casts to 0s and 1s for compatibility
attention_mask = input_ids.ne(self.tokenizer.pad_token_id).long()
return {
"input_ids": input_ids,
"labels": labels,
"attention_mask": attention_mask
}
def train_tokenize_function(examples, tokenizer, query, response):
sources = [PROMPT.format_map(dict(instruction=instruction)) for instruction in examples[query]]
targets = [f"{output}{tokenizer.eos_token}" for output in examples[response]]
data_dict = preprocess(sources, targets, tokenizer)
return data_dict
### Trainer
def default_worker_init_fn(worker_id):
# mỗi worker chỉ 1 thread cho BLAS
try:
import numpy as _np
except Exception:
_np = None
torch.set_num_threads(1)
os.environ.setdefault("OMP_NUM_THREADS", "1")
os.environ.setdefault("MKL_NUM_THREADS", "1")
os.environ.setdefault("OPENBLAS_NUM_THREADS", "1")
# Optional: bind CPU affinity per worker to avoid contention (NUMA-aware)
try:
cpu_count = os.cpu_count() or 1
# chia đều CPU cho workers
num_workers = getattr(torch.utils.data, "_num_workers", None)
# fallback: if not available, compute from environment variable or pass externally
# We'll do a simple round-robin assignment using worker_id
# assign a small mask of cores to this worker (e.g., chunk size 4)
chunk = max(1, cpu_count // max(1, min(64, cpu_count)))
start = (worker_id * chunk) % cpu_count
end = start + chunk
mask = set(range(start, min(end, cpu_count)))
try:
os.sched_setaffinity(0, mask)
except Exception:
pass
except Exception:
pass
def set_seed(seed: int):
# random.seed(seed)
# np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
transformers.set_seed(seed)
@pyrallis.wrap()
def main(mainCfg: MainConfig):
#mainCfg = get_config()
#print(mainCfg)
print('='*120)
# print(OmegaConf.to_yaml(mainCfg))
# print('-'*40)
#
# print((training_args))
set_seed(mainCfg.seed)
training_args = convert_to_trainer_args(mainCfg)
# wandb
ENTITY = "nvan-13-korea-university"
PROJECT = os.environ.get("WANDB_PROJECT")
api = wandb.Api()
try:
runs_list = api.runs(f"{ENTITY}/{PROJECT}")
next_run_num = len(runs_list) + 1
except Exception as e:
next_run_num = 1
training_args.run_name = f'[{next_run_num}]lr={mainCfg.trainer_args.learning_rate:.1e},b={mainCfg.trainer_args.per_device_train_batch_size},'\
f'n={mainCfg.rotation_adapter_config.num_rotations},r={mainCfg.rotation_adapter_config.r},'\
f'init={mainCfg.run_text}'
# training_args.project = f'Rotation-Llama2-{mainCfg.data.dataset_name}'
# print('-'*40)
# print(training_args.to_json_string())
# exit()
model = AutoModelForCausalLM.from_pretrained(mainCfg.model.model_name,
device_map="auto", low_cpu_mem_usage=True,
dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16,
attn_implementation="sdpa",
)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print("DEVICE", DEVICE)
# for name, param in model.named_parameters():
# if 'q_proj' in name and 'layers.5' in name:
# print(f"Name: {name} | {param.shape} ")
# print(f"Name (pretrained): {name} | {param.shape} | {param.data[0:5,0:5]}")
# print('model', model)
# exit()
total_params_now = sum(p.numel() for p in model.parameters())
print(f'#params of the pretrained model, {total_params_now:,}')
# print(model)
if mainCfg.model.adapter_path is not None:
print('___ Loading from: ', mainCfg.model.adapter_path)
model = PeftModel.from_pretrained(model, mainCfg.model.adapter_path, is_trainable = True)
elif mainCfg.rotation_adapter_config.r is not None:
rotation_adapter_config = asdict(mainCfg.rotation_adapter_config)
# rotation_adapter_config[peft_type]
for adapter_name in mainCfg.data.adapter_names:
rotation_config = RotationConfig(**rotation_adapter_config)
model = get_peft_model(model, rotation_config, adapter_name=adapter_name)
# model.set_adapter(adapter_name)
# import peft
# from peft import OFTConfig
# oft_config = OFTConfig(
# # r=16,
# oft_block_size=4*mainCfg.rotation_adapter_config.r,
# use_cayley_neumann=True,
# target_modules=["q_proj", "v_proj",],
# module_dropout=0.05, # mainCfg.rotation_adapter_config.drop_out,
# # task_type="CAUSAL_LM",
# bias="none",
# )
# for adapter_name in mainCfg.data.adapter_names:
# model = peft.get_peft_model(model, oft_config, adapter_name=adapter_name)
else:
print("Full Parameter Fine-Tuning")
model = model.to(DEVICE)
# print('model', model)
model.print_trainable_parameters()
exit()
# print("Program starts")
# time.sleep(300)
# exit()
# for name, param in model.named_parameters():
# if 'q_proj' in name and 'rotation' in name and 'layers.5' in name:
# print(f"Name: {name} | {param.shape} ")
# print(f"Name (pretrained): {name} | {param.shape} ")
# X = param.data
# print('model', type(model), X.shape)
# visualize_value_distribution(X)
# exit()
rotation_layers = filter(
lambda p: p.requires_grad, model.parameters()
)
tokenizer = AutoTokenizer.from_pretrained(
mainCfg.model.model_name,
model_max_length=mainCfg.model.model_max_seq_length,
padding_side="right",
use_fast=True,
)
if tokenizer.pad_token is None:
if tokenizer.unk_token_id is not None:
tokenizer.pad_token_id = tokenizer.unk_token_id
tokenizer.pad_token = tokenizer.unk_token
print("Set PAD token to UNK token.")
elif tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
print("Set PAD token to EOS token.")
if model is not None:
model.config.pad_token_id = tokenizer.pad_token_id
if model.config.pad_token_id != tokenizer.pad_token_id:
raise ValueError("Failed to sync pad_token_id between tokenizer and model config")
# local MetaMathQA-40K
raw_datasets = load_dataset("json", data_files=mainCfg.data.path, split=mainCfg.data.dataset_split)
#raw_train_datasets = load_dataset("MetaMathQA-40K", split=mainCfg.data.dataset_split)
# print('raw', type(raw_train_datasets), len(raw_train_datasets))
# split a single set
# split_ratio = mainCfg.data.split_ratio
# split_data = raw_datasets.train_test_split(test_size=split_ratio, seed=42)
# raw_train_datasets = split_data['train']
# raw_valid_datasets = split_data['test']
train_dataset = raw_datasets.map(
train_tokenize_function,
batched=True,
batch_size=30000,
num_proc=32,
remove_columns=raw_datasets.column_names,
load_from_cache_file=True,
desc="Running tokenizer on train dataset",
fn_kwargs={"tokenizer": tokenizer, "query": mainCfg.data.dataset_field[0],
"response": mainCfg.data.dataset_field[1]}
)
# valid_dataset = raw_valid_datasets.map(
# train_tokenize_function,
# batched=True,
# batch_size=30000,
# num_proc=32,
# remove_columns=raw_train_datasets.column_names,
# load_from_cache_file=True,
# desc="Running tokenizer on train dataset",
# fn_kwargs={"tokenizer": tokenizer, "query": mainCfg.data.dataset_field[0],
# "response": mainCfg.data.dataset_field[1]}
# )
print('- dataset size: ', len(train_dataset))
# print('dataset', type(train_dataset))
# print('process', len(train_dataset))
# print(f"Sample features: {train_dataset.column_names}, {train_dataset.num_rows}")
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=mainCfg.model.model_max_seq_length,
#mode=mainCfg.model.data_collator_mode,
)
data_module = dict(train_dataset=train_dataset, data_collator=data_collator)
optimizer = optim.AdamW(
rotation_layers,
lr=mainCfg.trainer_args.learning_rate, #
eps=1e-8
)
# print('model x', model)
start_time = datetime.now()
print('start time: ', start_time.strftime("%Y-%m-%d %H:%M:%S"))
trainer = MyTrainer(model=model, processing_class=tokenizer,
lamda=mainCfg.model.lambda_reg,
optimizers=(optimizer, None),
args=training_args, **data_module)
model.config.use_cache = False
# now = time.time()
# for i in range(20):
# next(iter(trainer.get_train_dataloader()))
# print('time', time.time()-now)
# now = time.time()
# dl = trainer.get_train_dataloader()
# t0 = time.time()
# for i, batch in enumerate(dl):
# if i==20: break
# print("time / 20 batches =", time.time() - t0)
# exit()
# model2 = model.merge_and_unload()
# results2 = trainer2.evaluate()
# print('results2: ', results2)
# exit()
trainer.train()
end_time = datetime.now()
print('end time: ', end_time.strftime("%Y-%m-%d %H:%M:%S"), '| duration: ', end_time - start_time)
# Save Model (Includes Adapter weights & Config)
# trainer.save_model(os.path.join(training_args.output_dir, 'ft'))
# Save Tokenizer
tokenizer.save_pretrained(os.path.join(training_args.output_dir, 'ft'))
# Save Training State (Metrics & Logs)
trainer.save_state()
# save peft_config. Or model.base_model.peft_config['default']
model.peft_config.save_pretrained(os.path.join(training_args.output_dir, 'ft'))
# the easiest way
model.save_pretrained(os.path.join(training_args.output_dir, 'ft2'))
return
class MyTrainer(Trainer):
def __init__(
self,
model: Union[PreTrainedModel, nn.Module] = None,
args: TrainingArguments = None,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[Union[Dataset, IterableDataset, "datasets.Dataset"]] = None,
eval_dataset: Optional[Union[Dataset, Dict[str, Dataset], "datasets.Dataset"]] = None,
processing_class: Optional[PreTrainedTokenizerBase] = None,
model_init: Optional[Callable[[], PreTrainedModel]] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
callbacks: Optional[List[TrainerCallback]] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
#run_name: Optional[str] = None,
#report_to: Optional[Union[str, list[str]]] = None,
# project
lamda: float = 1e-4
):
super().__init__(model=model, args=args, data_collator=data_collator,
train_dataset=train_dataset, eval_dataset=eval_dataset, processing_class=processing_class,
model_init=model_init, compute_metrics=compute_metrics, callbacks=callbacks,
optimizers=optimizers, preprocess_logits_for_metrics=preprocess_logits_for_metrics,
#run_name=run_name, report_to=report_to
)
self.lamda = lamda
# def compute_loss(self, model, inputs, return_outputs=False,
# num_items_in_batch: Optional[torch.Tensor] = None,):
# """
# How the loss is computed by Trainer. By default, all models return the loss in the first element.
# Subclass and override for custom behavior.
# """
# if self.label_smoother is not None and "labels" in inputs:
# labels = inputs.pop("labels")
# else:
# labels = None
# if self.model_accepts_loss_kwargs:
# kwargs = {}
# if num_items_in_batch is not None:
# kwargs["num_items_in_batch"] = num_items_in_batch
# inputs = {**inputs, **kwargs}
# outputs = model(**inputs)
# # Save past state if it exists
# # TODO: this needs to be fixed and made cleaner later.
# if self.args.past_index >= 0:
# self._past = outputs[self.args.past_index]
# if labels is not None:
# unwrapped_model = unwrap_model(model)
# if _is_peft_model(unwrapped_model):
# model_name = unwrapped_model.base_model.model._get_name()
# else:
# model_name = unwrapped_model._get_name()
# if model_name in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.values():
# loss = self.label_smoother(outputs, labels, shift_labels=True)
# else:
# loss = self.label_smoother(outputs, labels)
# else:
# if isinstance(outputs, dict) and "loss" not in outputs:
# raise ValueError(
# "The model did not return a loss from the inputs, only the following keys: "
# f"{','.join(outputs.keys())}. For reference, the inputs it received are {','.join(inputs.keys())}."
# )
# # We don't use .loss here since the model may return tuples instead of ModelOutput.
# loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
# # ------------------------------------------------------------------------------
# # for name, param in model.named_parameters():
# # if 'oft_r' in name:
# # device = param.device
# # householder_U_norm = param / param.norm(dim=0)
# # orth_loss = torch.norm(
# # torch.eye(householder_U_norm.size(1), device=device) - householder_U_norm.t() @ householder_U_norm)
# # print(self.lamda)
# # loss = loss + self.lamda * orth_loss.to(loss.device)
# # ------------------------------------------------------------------------------
# return (loss, outputs) if return_outputs else loss
def get_train_dataloader(self):
# get dataset & sampler from super
train_dataset = self.train_dataset
sampler = self._get_train_sampler()
# compute effective batch size per step (HF has some routines; we use per_device_train_batch_size)
batch_size = self.args.train_batch_size if hasattr(self.args, "train_batch_size") else self.args.per_device_train_batch_size
# recommended num_workers: start moderate (16), you can tune upward
num_workers = getattr(self.args, "dataloader_num_workers", 16)
pin_memory = getattr(self.args, "dataloader_pin_memory", True)
prefetch_factor = getattr(self.args, "dataloader_prefetch_factor", 2)
persistent_workers = getattr(self.args, "dataloader_persistent_workers", True)
return DataLoader(
train_dataset,
batch_size=batch_size,
sampler=sampler,
collate_fn=self.data_collator,
drop_last=self.args.dataloader_drop_last if hasattr(self.args, "dataloader_drop_last") else False,
num_workers=num_workers,
pin_memory=pin_memory,
persistent_workers=persistent_workers,
prefetch_factor=prefetch_factor,
worker_init_fn=default_worker_init_fn,
)
if __name__ == "__main__":
main() |