File size: 29,040 Bytes
6bb0065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
#
import sys
#print('sys.path: ___ ', sys.path)
#print(f"Current Python Executable: {sys.executable}")

### dynamo warning
import warnings

# Ignore FutureWarning: prims_common.check, Online Softmax
warnings.filterwarnings("ignore", category=FutureWarning, module='torch._inductor.lowering')
warnings.filterwarnings("ignore", message=".*Online softmax is disabled on the fly.*", category=UserWarning)

warnings.filterwarnings("ignore", message=".*Our suggested max number of worker in current system is 1.*", category=UserWarning)
warnings.filterwarnings("ignore", message=".*will be initialized from a multivariate normal distribution.*")
warnings.filterwarnings("ignore", message=".*that differ from the model config and generation config.*", category=UserWarning)
warnings.filterwarnings("ignore", message=".*torch.backends.cudnn.conv.fp32_precision = 'tf32' or torch..*", category=UserWarning)

import torch
torch.backends.cuda.matmul.fp32_precision = 'tf32'
# import wandb
import os
torch.set_num_threads(1)
os.environ["OMP_NUM_THREADS"]="1"
os.environ["MKL_NUM_THREADS"]="1"
import torch
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"PyTorch built with CUDA version: {torch.version.cuda}")

import yaml
#from peft import LoraConfig, get_peft_model_state_dict
from torch.utils.data import DataLoader
import time
from datetime import datetime
import math

from typing import List, Tuple

# import prodigyopt


###
import copy
from dataclasses import field, dataclass, asdict
from typing import Sequence, Literal, Dict

import transformers
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer
from transformers import Trainer
from transformers.modeling_utils import *
from transformers.trainer import _is_peft_model
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from transformers.data.data_collator import DataCollator

from transformers.training_args import TrainingArguments
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_callback import TrainerCallback
from transformers.trainer_utils import EvalPrediction
from torch.utils.data import Dataset, IterableDataset
from datasets import load_dataset
##
#from ..pipeline.flux_omini import transformer_forward, encode_images
# from ...omini.rotation import RotationTuner, RotationConfig


from rpeft.rotation import RotationTuner, RotationConfig
from rpeft import get_peft_model, PeftModel
from .config import MainConfig, convert_to_trainer_args
import pyrallis
from omegaconf import OmegaConf
import torch.optim as optim
import wandb
from torch.nn.utils.rnn import pad_sequence

IGNORE_INDEX = -100
PROMPT = (
    "Below is an instruction that describes a task. "
    "Write a response that appropriately completes the request.\n\n"
    "### Instruction:\n{instruction}\n\n### Response:"
)

def get_rank():
    try:
        rank = int(os.environ.get("LOCAL_RANK"))
    except:
        rank = 0
    return rank


def get_config():
    config_path = os.environ.get("OMINI_CONFIG")
    assert config_path is not None, "Please set the OMINI_CONFIG environment variable"
    with open(config_path, "r") as f:
        config = yaml.safe_load(f)
    return config


def init_wandb(wandb_config, run_name):
    import wandb

    try:
        assert os.environ.get("WANDB_API_KEY") is not None
        wandb.init(
            project=wandb_config["project"],
            name=run_name,
            config={},
        )
    except Exception as e:
        print("Failed to initialize WanDB:", e)



def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
    """Collects the state dict and dump to disk."""
    state_dict = trainer.model.state_dict()
    if trainer.args.should_save:
        cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
        del state_dict
        trainer._save(output_dir, state_dict=cpu_state_dict)  # noqa
        

def smart_tokenizer_and_embedding_resize(
        special_tokens_dict: Dict,
        tokenizer: transformers.PreTrainedTokenizer,
        model: transformers.PreTrainedModel,
):
    """Resize tokenizer and embedding.

    Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
    """
    num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
    model.resize_token_embeddings(len(tokenizer))

    if num_new_tokens > 0:
        input_embeddings = model.get_input_embeddings().weight.data
        output_embeddings = model.get_output_embeddings().weight.data

        input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
        output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)

        input_embeddings[-num_new_tokens:] = input_embeddings_avg
        output_embeddings[-num_new_tokens:] = output_embeddings_avg


def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
    """Tokenize a list of strings."""
    tokenized_list = [
        tokenizer(
            text,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        )
        for text in strings
    ]
    input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
    input_ids_lens = labels_lens = [
        tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
    ]
    return dict(
        input_ids=input_ids,
        labels=labels,
        input_ids_lens=input_ids_lens,
        labels_lens=labels_lens,
    )

def preprocess(
        sources: Sequence[str],
        targets: Sequence[str],
        tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
    """Preprocess the data by tokenizing."""
    examples = [s + t for s, t in zip(sources, targets)]
    examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
    input_ids = examples_tokenized["input_ids"]
    labels = copy.deepcopy(input_ids)
    for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
        label[:source_len] = IGNORE_INDEX
    return dict(input_ids=input_ids, labels=labels)


# @dataclass
# class DataCollatorForSupervisedDataset():
#     """Collate examples for supervised fine-tuning."""

#     tokenizer: transformers.PreTrainedTokenizer
#     max_length: int = field(default=512)
#     mode: str = field(default="fixed") # dynamic -> dynamo

#     def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
#         if self.mode == 'dynamic':
#             input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
#             input_ids = [torch.tensor(x) for x in input_ids]
#             input_ids = torch.nn.utils.rnn.pad_sequence(
#                 input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
#             )
#             labels = [torch.tensor(x) for x in labels]
#             labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
#             return dict(
#                 input_ids=input_ids,
#                 labels=labels,
#                 attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
#             )
#         elif self.mode == 'fixed':
#             input_ids = [torch.tensor(x["input_ids"][:self.max_length]) for x in instances]
#             input_ids = torch.stack([
#                 torch.nn.functional.pad(x, (0, self.max_length - x.size(0)), value=self.tokenizer.pad_token_id)
#                 for x in input_ids
#             ])

#             # Labels
#             labels = [torch.tensor(x["labels"][:self.max_length]) for x in instances]
#             labels = torch.stack([
#                 torch.nn.functional.pad(x, (0, self.max_length - x.size(0)), value=IGNORE_INDEX)
#                 for x in labels
#             ])

#             return dict(
#                 input_ids=input_ids,
#                 labels=labels,
#                 attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
#             )
#         else:
#             raise NotImplementedError

# @dataclass
# class DataCollatorForSupervisedDataset(object):
#     tokenizer: transformers.PreTrainedTokenizer
#     max_length: int = field(default=512)
#     mode: str = field(default="fixed")  # "dynamic" or "fixed"

#     def _pad_to_length(self, tensors: Sequence[torch.Tensor], pad_value: int, target_len: int):
#         """Pad a list of 1D tensors to target_len (int) and stack -> (B, target_len)."""
#         batch_size = len(tensors)
#         out = torch.full((batch_size, target_len), pad_value, dtype=tensors[0].dtype)
#         for i, t in enumerate(tensors):
#             L = min(t.size(0), target_len)
#             out[i, :L] = t[:L]
#         return out

#     def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
#         # Collect raw sequences (lists or tensors)
#         input_seqs = [torch.tensor(x["input_ids"], dtype=torch.long) for x in instances]
#         label_seqs = [torch.tensor(x["labels"], dtype=torch.long) for x in instances]

#         if self.mode == "dynamic":
#             # pad to the max length present in this batch (<= self.max_length)
#             batch_max_len = min(max([s.size(0) for s in input_seqs]), self.max_length)
#             input_ids = self._pad_to_length(input_seqs, pad_value=self.tokenizer.pad_token_id, target_len=batch_max_len)
#             labels = self._pad_to_length(label_seqs, pad_value=IGNORE_INDEX, target_len=batch_max_len)
#         elif self.mode == "fixed":
#             # always pad/truncate to self.max_length
#             input_ids = self._pad_to_length(input_seqs, pad_value=self.tokenizer.pad_token_id, target_len=self.max_length)
#             labels = self._pad_to_length(label_seqs, pad_value=IGNORE_INDEX, target_len=self.max_length)
#         else:
#             raise NotImplementedError(f"Unknown mode: {self.mode}")

#         attention_mask = input_ids.ne(self.tokenizer.pad_token_id).long()

#         return {
#             "input_ids": input_ids,
#             "labels": labels,
#             "attention_mask": attention_mask
#         }
    
@dataclass
class DataCollatorForSupervisedDataset():
    tokenizer: transformers.PreTrainedTokenizer
    max_length: int = field(default=512)
    mode: str = field(default="fixed")  # "dynamic" or "fixed"

    def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
        # Extract inputs and labels
        # Assuming instances is a list of dicts like {'input_ids': [...], 'labels': [...]}
        input_ids_list = [torch.tensor(x["input_ids"], dtype=torch.long) for x in instances]
        labels_list = [torch.tensor(x["labels"], dtype=torch.long) for x in instances]

        # 1. Determine padding logic
        if self.mode == "dynamic":
            # Dynamic padding: pad to the longest sequence in the batch
            # But cap it at self.max_length to prevent OOM
            batch_max_len = max([len(x) for x in input_ids_list])
            target_len = min(batch_max_len, self.max_length)
        else:
            # Fixed padding: always pad to max_length
            target_len = self.max_length

        # 2. Helper to pad and truncate
        def pad_and_truncate(tensors, padding_value):
            # First, pad everything using PyTorch's optimized utility (batch_first=True)
            padded = pad_sequence(tensors, batch_first=True, padding_value=padding_value)
            
            # Handle truncation/extending to exact target_len
            curr_len = padded.shape[1]
            if curr_len > target_len:
                # Truncate if too long (rare if filtered beforehand)
                return padded[:, :target_len]
            elif curr_len < target_len:
                # Pad more if shorter than target_len (happens in fixed mode)
                diff = target_len - curr_len
                padding = torch.full((padded.shape[0], diff), padding_value, dtype=padded.dtype)
                return torch.cat([padded, padding], dim=1)
            else:
                return padded

        # 3. Apply padding
        # Critical: tokenizer.pad_token_id must NOT be None here
        if self.tokenizer.pad_token_id is None:
            raise ValueError("Tokenizer.pad_token_id is None. Please set it to eos_token_id or unk_token_id.")
            
        input_ids = pad_and_truncate(input_ids_list, self.tokenizer.pad_token_id)
        labels = pad_and_truncate(labels_list, IGNORE_INDEX)

        # 4. Create Attention Mask explicitly
        # .ne() creates Bools, .long() casts to 0s and 1s for compatibility
        attention_mask = input_ids.ne(self.tokenizer.pad_token_id).long()

        return {
            "input_ids": input_ids,
            "labels": labels,
            "attention_mask": attention_mask
        }
        
def train_tokenize_function(examples, tokenizer, query, response):
    sources = [PROMPT.format_map(dict(instruction=instruction)) for instruction in examples[query]]
    targets = [f"{output}{tokenizer.eos_token}" for output in examples[response]]
    data_dict = preprocess(sources, targets, tokenizer)
    return data_dict



### Trainer
def default_worker_init_fn(worker_id):
    # mỗi worker chỉ 1 thread cho BLAS
    try:
        import numpy as _np
    except Exception:
        _np = None
    torch.set_num_threads(1)
    os.environ.setdefault("OMP_NUM_THREADS", "1")
    os.environ.setdefault("MKL_NUM_THREADS", "1")
    os.environ.setdefault("OPENBLAS_NUM_THREADS", "1")
    # Optional: bind CPU affinity per worker to avoid contention (NUMA-aware)
    try:
        cpu_count = os.cpu_count() or 1
        # chia đều CPU cho workers
        num_workers = getattr(torch.utils.data, "_num_workers", None)
        # fallback: if not available, compute from environment variable or pass externally
        # We'll do a simple round-robin assignment using worker_id
        # assign a small mask of cores to this worker (e.g., chunk size 4)
        chunk = max(1, cpu_count // max(1, min(64, cpu_count)))
        start = (worker_id * chunk) % cpu_count
        end = start + chunk
        mask = set(range(start, min(end, cpu_count)))
        try:
            os.sched_setaffinity(0, mask)
        except Exception:
            pass
    except Exception:
        pass

def set_seed(seed: int):
    # random.seed(seed)
    # np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    transformers.set_seed(seed)


@pyrallis.wrap()
def main(mainCfg: MainConfig):
    #mainCfg = get_config()
    #print(mainCfg)
    print('='*120)
    # print(OmegaConf.to_yaml(mainCfg))
    # print('-'*40)
    # 
    # print((training_args))
    set_seed(mainCfg.seed)
    training_args = convert_to_trainer_args(mainCfg)

    # wandb 
    ENTITY = "nvan-13-korea-university" 
    PROJECT = os.environ.get("WANDB_PROJECT")
    api = wandb.Api()
    try:
        runs_list = api.runs(f"{ENTITY}/{PROJECT}")
        next_run_num = len(runs_list) + 1
    except Exception as e:
        next_run_num = 1

    training_args.run_name = f'[{next_run_num}]lr={mainCfg.trainer_args.learning_rate:.1e},b={mainCfg.trainer_args.per_device_train_batch_size},'\
                            f'n={mainCfg.rotation_adapter_config.num_rotations},r={mainCfg.rotation_adapter_config.r},'\
                            f'init={mainCfg.run_text}'
    # training_args.project = f'Rotation-Llama2-{mainCfg.data.dataset_name}'

    # print('-'*40)
    # print(training_args.to_json_string())
    # exit()
    
    model = AutoModelForCausalLM.from_pretrained(mainCfg.model.model_name,
                                                 device_map="auto", low_cpu_mem_usage=True,
                                                 dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16,
                                                 attn_implementation="sdpa",
                                                 )
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
    print("DEVICE", DEVICE)
    # for name, param in model.named_parameters():
    #     if 'q_proj' in name and 'layers.5' in name:
    #         print(f"Name: {name} | {param.shape} ")
            # print(f"Name (pretrained): {name} | {param.shape} | {param.data[0:5,0:5]}")
    # print('model', model)
    # exit()

    total_params_now = sum(p.numel() for p in model.parameters())
    print(f'#params of the pretrained model, {total_params_now:,}')
    # print(model)
    if mainCfg.model.adapter_path is not None:
        print('___ Loading from:  ', mainCfg.model.adapter_path)
        model = PeftModel.from_pretrained(model, mainCfg.model.adapter_path, is_trainable = True)
    elif mainCfg.rotation_adapter_config.r is not None:
        rotation_adapter_config = asdict(mainCfg.rotation_adapter_config)
        # rotation_adapter_config[peft_type]
        
        for adapter_name in mainCfg.data.adapter_names:
            rotation_config = RotationConfig(**rotation_adapter_config)
            model = get_peft_model(model, rotation_config, adapter_name=adapter_name)
            # model.set_adapter(adapter_name)

        # import peft
        # from peft import OFTConfig
        # oft_config = OFTConfig(
        #     # r=16,
        #     oft_block_size=4*mainCfg.rotation_adapter_config.r,
        #     use_cayley_neumann=True,
        #     target_modules=["q_proj", "v_proj",],
        #     module_dropout=0.05, # mainCfg.rotation_adapter_config.drop_out,
        #     # task_type="CAUSAL_LM",
        #     bias="none",
        # )

        # for adapter_name in mainCfg.data.adapter_names:
        #     model = peft.get_peft_model(model, oft_config, adapter_name=adapter_name)
    else:
        print("Full Parameter Fine-Tuning")
    model = model.to(DEVICE)
        
    # print('model', model)
    model.print_trainable_parameters()
    exit()
    # print("Program starts")
    # time.sleep(300)
    # exit()

    # for name, param in model.named_parameters():
    #     if 'q_proj' in name and 'rotation' in name and 'layers.5' in name:
    #         print(f"Name: {name} | {param.shape} ")
    #         print(f"Name (pretrained): {name} | {param.shape} ")
    #         X = param.data
    # print('model', type(model), X.shape)
    # visualize_value_distribution(X)
    # exit()

    rotation_layers = filter(
                lambda p: p.requires_grad, model.parameters()
            )    

    tokenizer = AutoTokenizer.from_pretrained(
        mainCfg.model.model_name,
        model_max_length=mainCfg.model.model_max_seq_length,
        padding_side="right",
        use_fast=True,
    )

    if tokenizer.pad_token is None:
        if tokenizer.unk_token_id is not None:
            tokenizer.pad_token_id = tokenizer.unk_token_id
            tokenizer.pad_token = tokenizer.unk_token
            print("Set PAD token to UNK token.")
        elif tokenizer.eos_token_id is not None:
            tokenizer.pad_token_id = tokenizer.eos_token_id
            tokenizer.pad_token = tokenizer.eos_token
            print("Set PAD token to EOS token.")

        if model is not None:
            model.config.pad_token_id = tokenizer.pad_token_id
            if model.config.pad_token_id != tokenizer.pad_token_id:
                raise ValueError("Failed to sync pad_token_id between tokenizer and model config")

    # local MetaMathQA-40K
    raw_datasets = load_dataset("json", data_files=mainCfg.data.path, split=mainCfg.data.dataset_split)
    #raw_train_datasets = load_dataset("MetaMathQA-40K", split=mainCfg.data.dataset_split)
    # print('raw', type(raw_train_datasets), len(raw_train_datasets))

    # split a single set
    # split_ratio = mainCfg.data.split_ratio
    # split_data = raw_datasets.train_test_split(test_size=split_ratio, seed=42)
    # raw_train_datasets = split_data['train']
    # raw_valid_datasets = split_data['test']

    train_dataset = raw_datasets.map(
        train_tokenize_function,
        batched=True,
        batch_size=30000,
        num_proc=32,
        remove_columns=raw_datasets.column_names,
        load_from_cache_file=True,
        desc="Running tokenizer on train dataset",
        fn_kwargs={"tokenizer": tokenizer, "query": mainCfg.data.dataset_field[0],
                   "response": mainCfg.data.dataset_field[1]}
    )

    # valid_dataset = raw_valid_datasets.map(
    #     train_tokenize_function,
    #     batched=True,
    #     batch_size=30000,
    #     num_proc=32,
    #     remove_columns=raw_train_datasets.column_names,
    #     load_from_cache_file=True,
    #     desc="Running tokenizer on train dataset",
    #     fn_kwargs={"tokenizer": tokenizer, "query": mainCfg.data.dataset_field[0],
    #                "response": mainCfg.data.dataset_field[1]}
    # )
    print('- dataset size: ', len(train_dataset))


    # print('dataset', type(train_dataset))
    # print('process', len(train_dataset))
    # print(f"Sample features: {train_dataset.column_names}, {train_dataset.num_rows}")
    data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=mainCfg.model.model_max_seq_length, 
                                                     #mode=mainCfg.model.data_collator_mode,
                                                     )
    data_module = dict(train_dataset=train_dataset, data_collator=data_collator)

    optimizer = optim.AdamW(
        rotation_layers, 
        lr=mainCfg.trainer_args.learning_rate, #
        eps=1e-8
    )
    # print('model x', model)
    start_time = datetime.now()
    print('start time: ', start_time.strftime("%Y-%m-%d %H:%M:%S"))
    trainer = MyTrainer(model=model, processing_class=tokenizer,
                        lamda=mainCfg.model.lambda_reg,
                        optimizers=(optimizer, None),
                        args=training_args, **data_module)
    model.config.use_cache = False


    # now = time.time()
    # for i in range(20):
    #     next(iter(trainer.get_train_dataloader()))
    # print('time', time.time()-now)
    # now = time.time()
    

    # dl = trainer.get_train_dataloader()
    # t0 = time.time()
    # for i, batch in enumerate(dl):
    #     if i==20: break
    # print("time / 20 batches =", time.time() - t0)
    # exit()


    # model2 = model.merge_and_unload()
    # results2 = trainer2.evaluate()
    # print('results2: ', results2)
    # exit()

    trainer.train()
    
    end_time = datetime.now()
    print('end time: ', end_time.strftime("%Y-%m-%d %H:%M:%S"), '| duration: ', end_time - start_time)
    # Save Model (Includes Adapter weights & Config)
    # trainer.save_model(os.path.join(training_args.output_dir, 'ft'))
    # Save Tokenizer
    tokenizer.save_pretrained(os.path.join(training_args.output_dir, 'ft'))
    # Save Training State (Metrics & Logs)
    trainer.save_state()

    # save peft_config. Or model.base_model.peft_config['default']
    model.peft_config.save_pretrained(os.path.join(training_args.output_dir, 'ft'))

    # the easiest way
    model.save_pretrained(os.path.join(training_args.output_dir, 'ft2'))
    return



class MyTrainer(Trainer):

    def __init__(
            self,
            model: Union[PreTrainedModel, nn.Module] = None,
            args: TrainingArguments = None,
            data_collator: Optional[DataCollator] = None,
            train_dataset: Optional[Union[Dataset, IterableDataset, "datasets.Dataset"]] = None,
            eval_dataset: Optional[Union[Dataset, Dict[str, Dataset], "datasets.Dataset"]] = None,
            processing_class: Optional[PreTrainedTokenizerBase] = None,
            model_init: Optional[Callable[[], PreTrainedModel]] = None,
            compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
            callbacks: Optional[List[TrainerCallback]] = None,
            optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
            preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
            #run_name: Optional[str] = None,
            #report_to: Optional[Union[str, list[str]]] = None,
            # project
            lamda: float = 1e-4
    ):
        super().__init__(model=model, args=args, data_collator=data_collator,
                         train_dataset=train_dataset, eval_dataset=eval_dataset, processing_class=processing_class,
                         model_init=model_init, compute_metrics=compute_metrics, callbacks=callbacks,
                         optimizers=optimizers, preprocess_logits_for_metrics=preprocess_logits_for_metrics,
                         #run_name=run_name, report_to=report_to
                         )
        self.lamda = lamda

    # def compute_loss(self, model, inputs, return_outputs=False,
    #                  num_items_in_batch: Optional[torch.Tensor] = None,):
    #     """
    #     How the loss is computed by Trainer. By default, all models return the loss in the first element.

    #     Subclass and override for custom behavior.
    #     """
    #     if self.label_smoother is not None and "labels" in inputs:
    #         labels = inputs.pop("labels")
    #     else:
    #         labels = None
    #     if self.model_accepts_loss_kwargs:
    #         kwargs = {}
    #         if num_items_in_batch is not None:
    #             kwargs["num_items_in_batch"] = num_items_in_batch
    #         inputs = {**inputs, **kwargs}
    #     outputs = model(**inputs)
    #     # Save past state if it exists
    #     # TODO: this needs to be fixed and made cleaner later.
    #     if self.args.past_index >= 0:
    #         self._past = outputs[self.args.past_index]

    #     if labels is not None:
    #         unwrapped_model = unwrap_model(model)
    #         if _is_peft_model(unwrapped_model):
    #             model_name = unwrapped_model.base_model.model._get_name()
    #         else:
    #             model_name = unwrapped_model._get_name()
    #         if model_name in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.values():
    #             loss = self.label_smoother(outputs, labels, shift_labels=True)
    #         else:
    #             loss = self.label_smoother(outputs, labels)
    #     else:
    #         if isinstance(outputs, dict) and "loss" not in outputs:
    #             raise ValueError(
    #                 "The model did not return a loss from the inputs, only the following keys: "
    #                 f"{','.join(outputs.keys())}. For reference, the inputs it received are {','.join(inputs.keys())}."
    #             )
    #         # We don't use .loss here since the model may return tuples instead of ModelOutput.
    #         loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
    #     # ------------------------------------------------------------------------------

    #     # for name, param in model.named_parameters():
    #     #     if 'oft_r' in name:
    #     #         device = param.device
    #     #         householder_U_norm = param / param.norm(dim=0)
    #     #         orth_loss = torch.norm(
    #     #             torch.eye(householder_U_norm.size(1), device=device) - householder_U_norm.t() @ householder_U_norm)
    #     #         print(self.lamda)
    #     #         loss = loss + self.lamda * orth_loss.to(loss.device)

    #     # ------------------------------------------------------------------------------

    #     return (loss, outputs) if return_outputs else loss

    def get_train_dataloader(self):
        # get dataset & sampler from super
        train_dataset = self.train_dataset
        sampler = self._get_train_sampler()

        # compute effective batch size per step (HF has some routines; we use per_device_train_batch_size)
        batch_size = self.args.train_batch_size if hasattr(self.args, "train_batch_size") else self.args.per_device_train_batch_size

        # recommended num_workers: start moderate (16), you can tune upward
        num_workers = getattr(self.args, "dataloader_num_workers", 16)
        pin_memory = getattr(self.args, "dataloader_pin_memory", True)
        prefetch_factor = getattr(self.args, "dataloader_prefetch_factor", 2)
        persistent_workers = getattr(self.args, "dataloader_persistent_workers", True)

        return DataLoader(
            train_dataset,
            batch_size=batch_size,
            sampler=sampler,
            collate_fn=self.data_collator,
            drop_last=self.args.dataloader_drop_last if hasattr(self.args, "dataloader_drop_last") else False,
            num_workers=num_workers,
            pin_memory=pin_memory,
            persistent_workers=persistent_workers,
            prefetch_factor=prefetch_factor,
            worker_init_fn=default_worker_init_fn,
        )
    
if __name__ == "__main__":
    main()