|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
def rescale_2x(x: torch.Tensor, scale_factor=2): |
|
|
return F.interpolate(x, scale_factor=scale_factor, mode="bilinear", align_corners=False) |
|
|
|
|
|
|
|
|
def resize_to(x: torch.Tensor, tgt_hw: tuple): |
|
|
return F.interpolate(x, size=tgt_hw, mode="bilinear", align_corners=False) |
|
|
|
|
|
|
|
|
def clip_grad(params, mode, clip_cfg: dict): |
|
|
if mode == "norm": |
|
|
if "max_norm" not in clip_cfg: |
|
|
raise ValueError("`clip_cfg` must contain `max_norm`.") |
|
|
torch.nn.utils.clip_grad_norm_( |
|
|
params, |
|
|
max_norm=clip_cfg.get("max_norm"), |
|
|
norm_type=clip_cfg.get("norm_type", 2.0), |
|
|
) |
|
|
elif mode == "value": |
|
|
if "clip_value" not in clip_cfg: |
|
|
raise ValueError("`clip_cfg` must contain `clip_value`.") |
|
|
torch.nn.utils.clip_grad_value_(params, clip_value=clip_cfg.get("clip_value")) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|