--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: TokenClassifierModel results: [] --- # TokenClassifierModel This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3167 - Precision: 0.3447 - Recall: 0.2910 - F1: 0.3156 - Accuracy: 0.9336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 77 | 0.3453 | 0.2878 | 0.1075 | 0.1565 | 0.9291 | | No log | 2.0 | 154 | 0.3167 | 0.3447 | 0.2910 | 0.3156 | 0.9336 | ### Framework versions - Transformers 4.55.3 - Pytorch 2.8.0+cpu - Datasets 4.0.0 - Tokenizers 0.21.4