File size: 6,963 Bytes
b3fc8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import json
import numpy as np
from PIL import Image
import pandas as pd
from IPython.display import Image
from ultralytics import YOLO
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
from datasets import load_dataset
import cv2
import pytesseract
from PIL import Image, ImageEnhance
import numpy as np

# Ensure you have installed Tesseract OCR and set the path
pytesseract.pytesseract.tesseract_cmd = r'C:/Program Files/Tesseract-OCR/tesseract.exe'  # Update this path for your system

def ocr_core(image):
    # Run Tesseract OCR on the preprocessed image
    data = pytesseract.image_to_data(image, output_type=pytesseract.Output.DICT)
    df = pd.DataFrame(data)
    df = df[df['conf'] != -1]
    df['left_diff'] = df.groupby('block_num')['left'].diff().fillna(0).astype(int)
    df['prev_width'] = df['width'].shift(1).fillna(0).astype(int)
    df['spacing'] = (df['left_diff'] - df['prev_width']).fillna(0).astype(int)
    df['text'] = df.apply(lambda x: '\n' + x['text'] if (x['word_num'] == 1) & (x['block_num'] != 1) else x['text'], axis=1)
    df['text'] = df.apply(lambda x: ',' + x['text'] if x['spacing'] > 100 else x['text'], axis=1)
    ocr_text = ""
    for text in df['text']:
        ocr_text += text + ' '
    return ocr_text

def improve_ocr_accuracy(img):
    # Read image with PIL (for color preservation)
    img =Image.open(img)
    
    # Increase image size (can improve accuracy for small text)
    img = img.resize((img.width * 4, img.height * 4))
    
    # Increase contrast
    enhancer = ImageEnhance.Contrast(img)
    img = enhancer.enhance(2)

    _, thresh = cv2.threshold(np.array(img), 127, 255, cv2.THRESH_BINARY_INV)
    
    return thresh


def create_ocr_outputs():
    directory_path = os.getcwd() + '/data/processed/hand_labeled_tables/hand_labeled_tables'

    for root, dirs, files in os.walk(directory_path):
        # Print the current directory
        print(f"Current directory: {root}")
        
        # Print all subdirectories in the current directory
        print("Subdirectories:")
        for dir in dirs:
            print(f"- {dir}")
        
        # Print all files in the current directory
        print("Files:")
        for image_path in files:
            print(f"- {image_path}")
            full_path = os.path.join(root, image_path)
            # Preprocess the image
            preprocessed_image = improve_ocr_accuracy(full_path)

            ocr_text = ocr_core(preprocessed_image)
            with open(os.getcwd() + f"/data/processed/annotations/{image_path.split('.')[0]}.txt", 'wb') as f:
                f.write(ocr_text.encode('utf-8'))
        
        print("\n")  # Add a blank line for readability
        

def prepare_dataset(ocr_dir, csv_dir, output_file):
    with open(output_file, 'w', encoding='utf-8') as jsonl_file:
        for filename in os.listdir(ocr_dir):
            if filename.endswith('.txt'):
                ocr_path = os.path.join(ocr_dir, filename)
                csv_path = os.path.join(csv_dir, filename)#.replace('.txt', '.csv'))
                print(csv_path)
                # if not os.path.exists(csv_path):
                #     print(f"Warning: Corresponding CSV file not found for {ocr_path}")
                #     continue
                
                with open(ocr_path, 'r', encoding='utf-8') as ocr_file:
                    ocr_text = ocr_file.read()
                
                with open(csv_path, 'r', encoding='utf-8') as csv_file:
                    csv_text = csv_file.read()
                
                json_object = {
                    "prompt": ocr_text,
                    "completion": csv_text
                }
                jsonl_file.write(json.dumps(json_object) + '\n')

def tokenize_function(examples):
    # Tokenize the inputs
    inputs = tokenizer(examples['prompt'], truncation=True, padding='max_length', max_length=1012)
    
    # Create labels which are the same as input_ids
    inputs['labels'] = inputs['input_ids'].copy()
    return inputs


if __name__ == '__name__':

    # Ensure CUDA is available
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    # Load a pretrained YOLOv8 model
    model = YOLO('yolov8l.pt')

    # Train the model on your custom dataset
    results = model.train(
        data='config.yaml',
        epochs=10,
        imgsz=640,
        batch=8,
        name='yolov8l_custom',
        device=device
    )

    # Evaluate the model's performance
    metrics = model.val()
    print(metrics.box.map)    # print the mean Average Precision
    torch.save(model, os.getcwd() + '/models/trained_yolov8.pt')
    
    create_ocr_outputs()

    # Usage
    ocr_dir = os.getcwd() + '/data/processed/annotations'
    csv_dir = os.getcwd() + '/data/processed/hand_labeled_tables'
    output_file = 'dataset.jsonl'
    prepare_dataset(ocr_dir, csv_dir, output_file)
    

    # Load the dataset
    dataset = load_dataset('json', data_files={'train': 'dataset.jsonl'})
    dataset = dataset['train'].train_test_split(test_size=0.1)

    # Tokenization
    model_name = 'gpt2'  # You can choose other models like 'gpt2-medium', 'gpt2-large', etc.
    tokenizer = GPT2Tokenizer.from_pretrained(model_name)

    # Add a new pad token
    tokenizer.add_special_tokens({'pad_token': '[PAD]'})

    tokenized_dataset = dataset.map(tokenize_function, batched=True)

    # Load the model
    model = GPT2LMHeadModel.from_pretrained(model_name)

    # Resize the model embeddings to accommodate the new pad token
    model.resize_token_embeddings(len(tokenizer))

    training_args = TrainingArguments(
        output_dir='./results',
        num_train_epochs=3,
        per_device_train_batch_size=2,
        per_device_eval_batch_size=2,
        warmup_steps=500,
        weight_decay=0.01,
        logging_dir='./logs',
        logging_steps=10,
        evaluation_strategy="epoch",  # Evaluate at the end of each epoch
        save_strategy="epoch",  # Save at the end of each epoch
        load_best_model_at_end=True,  # Load the best model when finished training (based on evaluation)
        metric_for_best_model="eval_loss",  # Use eval_loss to determine the best model
    )

    # Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_dataset['train'],
        eval_dataset=tokenized_dataset['test'],
    )

    # Train the model
    trainer.train()

    # Evaluate the model
    eval_results = trainer.evaluate()
    print(f"Evaluation results: {eval_results}")

    # Save the model
    model.save_pretrained(os.getcwd() + '/models/gpt')
    tokenizer.save_pretrained(os.getcwd() + '/models/gpt')