File size: 13,167 Bytes
b3fc8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import os
import urllib.request
import json
import sys
import requests
import tarfile
import numpy as np
from PIL import Image
import PIL.Image
from pathlib import Path
import shutil
from PIL import Image
import pandas as pd
from PIL import ImageFont, ImageDraw
from IPython.display import display, Image

from matplotlib import pyplot as plt
import cv2 as cv


def get_data_and_annots():
  images={}
  with open('data/raw/label/publaynet/train.json') as t:
    data=json.load(t)

  for train_images in os.walk('data/raw/train/publaynet/train'):
    train_imgs = train_images[2]

  for image in data['images']:
    if image['file_name'] in train_imgs:
      images[image['id']] = {'file_name': "data/raw/train/publaynet/train/" + image['file_name'], 'annotations': []}
    if len(images) == 10000:
      break

  for ann in data['annotations']:
    if ann['image_id'] in images.keys():
      images[ann['image_id']]['annotations'].append(ann)
  return images,data


def markup(samples,image, annotations):
    ''' Draws the segmentation, bounding box, and label of each annotation

    '''
    draw = ImageDraw.Draw(image, 'RGBA')
    font = ImageFont.load_default()  # You can specify a different font if needed
    for annotation in annotations:
        # Draw segmentation
        draw.polygon(annotation['segmentation'][0],
                     fill=colors[samples['categories'][annotation['category_id'] - 1]['name']] + (64,))
        # Draw bbox
        draw.rectangle(
            (annotation['bbox'][0],
             annotation['bbox'][1],
             annotation['bbox'][0] + annotation['bbox'][2],
             annotation['bbox'][1] + annotation['bbox'][3]),
            outline=colors[data['categories'][annotation['category_id'] - 1]['name']] + (255,),
            width=2
        )
        # Draw label
        text = samples['categories'][annotation['category_id'] - 1]['name']
        bbox = draw.textbbox((0, 0), text, font=font)
        w = bbox[2] - bbox[0]
        h = bbox[3] - bbox[1]
        
        if annotation['bbox'][3] < h:
            draw.rectangle(
                (annotation['bbox'][0] + annotation['bbox'][2],
                 annotation['bbox'][1],
                 annotation['bbox'][0] + annotation['bbox'][2] + w,
                 annotation['bbox'][1] + h),
                fill=(64, 64, 64, 255)
            )
            draw.text(
                (annotation['bbox'][0] + annotation['bbox'][2],
                 annotation['bbox'][1]),
                text=samples['categories'][annotation['category_id'] - 1]['name'],
                fill=(255, 255, 255, 255)
            )
        else:
            draw.rectangle(
                (annotation['bbox'][0],
                 annotation['bbox'][1],
                 annotation['bbox'][0] + w,
                 annotation['bbox'][1] + h),
                fill=(64, 64, 64, 255)
            )
            draw.text(
                (annotation['bbox'][0],
                 annotation['bbox'][1]),
                text=samples['categories'][annotation['category_id'] - 1]['name'],
                fill=(255, 255, 255, 255)

            )
    return np.array(image)

import os
import shutil
from pathlib import Path
import cv2 as cv

def write_file(image_id, inside, filename, content, check_set):
    """

    Writes content to a file. If 'inside' is True, appends the content, otherwise overwrites the file.



    Args:

        image_id (str): The ID of the image.

        inside (bool): Flag to determine if content should be appended or overwritten.

        filename (str): The path to the file.

        content (str): The content to write to the file.

        check_set (set): A set to keep track of image IDs.

    """
    if inside:
        with open(filename, "a") as file:
            file.write("\n")
            file.write(content)
    else:
        check_set.add(image_id)
        with open(filename, "w") as file:
            file.write(content)

def get_bb_shape(bboxe, img):
    """

    Calculates the shape of the bounding box in the image.



    Args:

        bboxe (list): Bounding box coordinates [x, y, width, height].

        img (numpy.ndarray): The image array.



    Returns:

        tuple: The shape (height, width) of the bounding box.

    """
    tleft = (bboxe[0], bboxe[1])
    tright = (bboxe[0] + bboxe[2], bboxe[1])
    bleft = (bboxe[0], bboxe[1] + bboxe[3])
    bright = (bboxe[0] + bboxe[2], bboxe[1] + bboxe[3])

    top_left_x = min([tleft[0], tright[0], bleft[0], bright[0]])
    top_left_y = min([tleft[1], tright[1], bleft[1], bright[1]])
    bot_right_x = max([tleft[0], tright[0], bleft[0], bright[0]])
    bot_right_y = max([tleft[1], tright[1], bleft[1], bright[1]])

    image = img[int(top_left_y):int(bot_right_y) + 1, int(top_left_x):int(bot_right_x) + 1]

    return image.shape[:2]

def coco_to_yolo(x1, y1, w, h, image_w, image_h):
    """

    Converts COCO format bounding box to YOLO format.



    Args:

        x1 (float): Top-left x coordinate.

        y1 (float): Top-left y coordinate.

        w (float): Width of the bounding box.

        h (float): Height of the bounding box.

        image_w (int): Width of the image.

        image_h (int): Height of the image.



    Returns:

        list: YOLO format bounding box [x_center, y_center, width, height].

    """
    return [((2 * x1 + w) / (2 * image_w)), ((2 * y1 + h) / (2 * image_h)), w / image_w, h / image_h]

def create_directory(path):
    """

    Creates a directory, deleting it first if it already exists.



    Args:

        path (str): The path to the directory.

    """
    dirpath = Path(path)
    if dirpath.exists() and dirpath.is_dir():
        shutil.rmtree(dirpath)
    os.mkdir(dirpath)

def generate_yolo_labels(images):
    """

    Generates YOLO format labels from the given images and annotations.



    Args:

        images (dict): Dictionary containing image data and annotations.

    """
    check_set = set()
    
    create_directory(os.getcwd() + '/data/processed/yolo')
    
    for key in images:
        image_id = ','.join(map(str, [image_id['image_id'] for image_id in images[key]['annotations']]))
        category_id = ''.join(map(str, [cat_id['category_id'] - 1 for cat_id in images[key]['annotations']]))
        bbox = [bbox['bbox'] for bbox in images[key]['annotations']]
        image_path = images[key]['file_name']
        filename = os.getcwd() + '/data/processed/yolo/' + image_path.split('/')[-1].split(".")[0] + '.txt'

        for index, b in enumerate(bbox):
            bbox = [b[0], b[1], b[2], b[3]]
            shape = get_bb_shape(bbox, cv.imread(image_path))
            yolo_bbox = coco_to_yolo(bbox[0], bbox[1], shape[1], shape[0], cv.imread(image_path).shape[1], cv.imread(image_path).shape[0])
            content = category_id[index] + ' ' + str(yolo_bbox[0]) + ' ' + str(yolo_bbox[1]) + ' ' + str(yolo_bbox[2]) + ' ' + str(yolo_bbox[3])

            if image_id in check_set:
                write_file(image_id, True, filename, content, check_set)
            else:
                write_file(image_id, False, filename, content, check_set)


def delete_additional_images(old_train_path, temp_images_path, yolo_path):
    train = next(os.walk(old_train_path), (None, None, []))[2] 
    label = next(os.walk(yolo_path), (None, None, []))[2]
    
    dirpath = Path(temp_images_path) 
    if dirpath.exists() and dirpath.is_dir():
        shutil.rmtree(dirpath)
    os.mkdir(dirpath)

    for img in train:
        splited = img.split(".")[0]
        txt = f"{splited}.txt"
        if txt in label:
            shutil.move(f"{old_train_path}/{img}", f"{temp_images_path}/{img}")
    return

def split_data(temp_images_path):
    image = next(os.walk(temp_images_path), (None, None, []))[2]
    train = image[int(len(image) * .1) : int(len(image) * .90)]
    validation = list(set(image) - set(train))
    
    create_directory(os.getcwd() + '/data/processed/training')
    create_directory(os.getcwd() + '/data/processed/validation')
    create_directory(os.getcwd() + '/data/processed/training/images/')
    create_directory(os.getcwd() + '/data/processed/validation/images/')

    for train_img in train:
        shutil.move(f'{temp_images_path}/{train_img}', os.getcwd() + '/data/processed/training/images/')

    for valid_img in validation:
        shutil.move(f'{temp_images_path}/{valid_img}', os.getcwd() + '/data/processed/validation/images/')
    
    validation_without_ext = [i.split('.')[0] for i in validation]
    return validation_without_ext

def create_directory(path):
    dirpath = Path(path)
    if dirpath.exists() and dirpath.is_dir():
        shutil.rmtree(dirpath)
    os.mkdir(dirpath)

def get_labels(yolo_path, valid_without_extension):
    create_directory(os.getcwd() + '/data/processed/training/labels')
    create_directory(os.getcwd() + '/data/processed/validation/labels')
    
    label = next(os.walk(yolo_path), (None, None, []))[2]
    for lab in label:
        split = lab.split(".")[0]
        if split in valid_without_extension:
            shutil.move(f"{yolo_path}/{lab}", os.getcwd() + f'/data/processed/validation/labels/{lab}')
        else:
            shutil.move(f"{yolo_path}/{lab}", os.getcwd() + f'/data/processed/training/labels/{lab}')
    
    return 

def final_preparation(old_train_path, temp_images_path, yolo_path, images):
    delete_additional_images(old_train_path, temp_images_path, yolo_path)
    valid_without_extension = split_data(temp_images_path)
    
    dirpath = Path(temp_images_path) 
    if dirpath.exists() and dirpath.is_dir():
        shutil.rmtree(dirpath)
    
    return get_labels(yolo_path, valid_without_extension)

 
def annotate_tables(directory):
    dirpath = Path(os.getcwd() + f'/data/processed/tables') 
    if dirpath.exists() and dirpath.is_dir():
        shutil.rmtree(dirpath)
    os.mkdir(dirpath)
    
    # Iterate through the directory
    for filename in os.listdir(directory):
        # Get the full path of the file
        file_path = os.path.join(directory, filename)
        
        # Check if it's a file (not a subdirectory)
        if os.path.isfile(file_path):
            img_name = filename.split('.')[0]

            if os.path.isfile(os.getcwd() + f'/data/processed/training/images/{img_name}.jpg'):
                with open(os.getcwd() + f'/data/processed/training/labels/{img_name}.txt', 'r') as f:
                    results = f.read()
                original_image = Image.open(os.getcwd() + f'/data/processed/training/images/{img_name}.jpg')
                
            elif os.path.isfile(os.getcwd() + f'/data/processed/validation/images/{img_name}.jpg'):
                with open(os.getcwd() + f'/data/processed/validation/labels/{img_name}.txt', 'r') as f:
                    results = f.read()
                original_image = Image.open(os.getcwd() + f'/data/processed/validation/images/{img_name}.jpg')

            # Iterate through the results
            for r in results:
                boxes = r.boxes  # Bounding boxes object
                
                for box in boxes:
                    # Check if the detected object is a table
                    if box.cls == 3:  
                        # Get the bounding box coordinates
                        x1, y1, x2, y2 = box.xyxy[0]  # get box coordinates in (top, left, bottom, right) format
                        
                        # Convert tensor to int
                        x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
                        
                        # Crop the original image to the table region
                        table_image = original_image.crop((x1, y1, x2, y2))
                        
                        # Show the cropped table image
                        table_image.show()
                        
                        # Save the cropped table image
                        table_image.save(os.getcwd() + f'/data/processed/tables/{img_name}.jpg')
                        
                        # Break after finding the first table (remove this if you want to detect multiple tables)
                        break

                # Break after processing the first result (usually there's only one result per image)
                break

if __name__ == '__main__':
    colors = {'title': (255, 0, 0),
            'text': (0, 255, 0),
            'figure': (0, 0, 255),
            'table': (255, 255, 0),
            'list': (0, 255, 255)}
    images,data = get_data_and_annots()
    generate_labels = generate_yolo_labels(images)
    finalPrep = final_preparation(os.path.join(os.getcwd() + r'\data\raw\train\publaynet\train'),os.path.join(os.getcwd() + r"\data\processed\images"), os.getcwd() + '/data/processed/yolo',images)
    annotate_tables(os.getcwd() + '/data/processed/hand_labeled_tables/hand_labeled_tables')