keesephillips's picture
Added Naive model and comments
6ce6b56 verified
"""
Attribution: https://github.com/AIPI540/AIPI540-Deep-Learning-Applications/
Jon Reifschneider
Brinnae Bent
"""
import streamlit as st
from PIL import Image
import numpy as np
import os
import numpy as np
import pandas as pd
import pandas as pd
import os
import json
import pandas as pd
import torch
import numpy as np
import pandas as pd
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
class NNColabFiltering(nn.Module):
def __init__(self, n_playlists, n_artists, embedding_dim_users, embedding_dim_items, n_activations, rating_range):
super().__init__()
self.user_embeddings = nn.Embedding(num_embeddings=n_playlists,embedding_dim=embedding_dim_users)
self.item_embeddings = nn.Embedding(num_embeddings=n_artists,embedding_dim=embedding_dim_items)
self.fc1 = nn.Linear(embedding_dim_users+embedding_dim_items,n_activations)
self.fc2 = nn.Linear(n_activations,1)
self.rating_range = rating_range
def forward(self, X):
# Get embeddings for minibatch
embedded_users = self.user_embeddings(X[:,0])
embedded_items = self.item_embeddings(X[:,1])
# Concatenate user and item embeddings
embeddings = torch.cat([embedded_users,embedded_items],dim=1)
# Pass embeddings through network
preds = self.fc1(embeddings)
preds = F.relu(preds)
preds = self.fc2(preds)
# Scale predicted ratings to target-range [low,high]
preds = torch.sigmoid(preds) * (self.rating_range[1]-self.rating_range[0]) + self.rating_range[0]
return preds
def generate_recommendations(artist_album, playlists, model, playlist_id, device, top_n=10, batch_size=1024):
'''
Loads the prefetched data from the output dir
Inputs:
artist_album: the dataframe containing the mappings for the artist and albums
playlists: the dataframe containing the playlists contents
model: the trained model
playlist_id: the playlist id to generate recommendation for
device: the gpu or cpu device define by torch
top_n: the number of recommendations to generate
batch_size: the batch size to use
Returns:
album: the recommended album
playlists: the recommended artist
'''
model.eval()
all_movie_ids = torch.tensor(artist_album['artist_album_id'].values, dtype=torch.long, device=device)
user_ids = torch.full((len(all_movie_ids),), playlist_id, dtype=torch.long, device=device)
all_predictions = torch.zeros(len(all_movie_ids), device=device)
with torch.no_grad():
for i in range(0, len(all_movie_ids), batch_size):
batch_user_ids = user_ids[i:i+batch_size]
batch_movie_ids = all_movie_ids[i:i+batch_size]
input_tensor = torch.stack([batch_user_ids, batch_movie_ids], dim=1)
batch_predictions = model(input_tensor).squeeze()
all_predictions[i:i+batch_size] = batch_predictions
predictions = all_predictions.cpu().numpy()
albums_listened = set(playlists.loc[playlists['playlist_id'] == playlist_id, 'artist_album_id'].tolist())
unlistened_mask = np.isin(artist_album['artist_album_id'].values, list(albums_listened), invert=True)
top_indices = np.argsort(predictions[unlistened_mask])[-top_n:][::-1]
recs = artist_album['artist_album_id'].values[unlistened_mask][top_indices]
recs_names = artist_album.loc[artist_album['artist_album_id'].isin(recs)]
album, artist = recs_names['album_name'].values, recs_names['artist_name'].values
return album.tolist(), artist.tolist()
def load_data():
'''
Loads the prefetched data from the output dir
Inputs:
Returns:
artist_album: pandas DataFrame with the best sentiment score
playlists: pandas DataFrame with the worst sentiment score
'''
artist_album = pd.read_csv(os.path.join(os.getcwd() + '/data/processed','artist_album.csv'))
artist_album = artist_album[['artist_album_id','artist_album','artist_name','album_name']].drop_duplicates()
playlists = pd.read_csv(os.path.join(os.getcwd() + '/data/processed','playlists.csv'))
return artist_album, playlists
artist_album, playlists = load_data()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.load('models/recommender.pt', map_location=device)
if __name__ == '__main__':
st.header('Spotify Playlists')
img1, img2 = st.columns(2)
music_notes = Image.open('assets/music_notes.png')
img1.image(music_notes, use_column_width=True)
trumpet = Image.open('assets/trumpet.png')
img2.image(trumpet, use_column_width=True)
with st.sidebar:
playlist_name = st.selectbox(
"Playlist Selection",
( list(set(playlists['name'].dropna())) )
)
playlist_id = playlists['playlist_id'][playlists['name'] == playlist_name].values[0]
albums, artists = generate_recommendations(artist_album, playlists, model, playlist_id, device)
st.dataframe(data=playlists[['artist_name','album_name','track_name']][playlists['playlist_id'] == playlist_id])
st.write(f"*Recommendations for playlist:* {playlists['name'][playlists['playlist_id'] == playlist_id].values[0]}")
col1, col2 = st.columns(2)
with col1:
st.write(f'Artist')
with col2:
st.write(f'Album')
for album, artist in zip(albums, artists):
with col1:
st.write(f"**{artist}**")
with col2:
st.write(f"**{album}**")