File size: 23,495 Bytes
de15dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import torch
from torch import nn
from modules.until_module import PreTrainedModel, AllGather, CrossEn
from modules.module_cross import CrossModel, CrossConfig, Transformer as TransformerClip
from modules.module_clip import CLIP, convert_weights
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence
logger = logging.getLogger(__name__)
allgather = AllGather.apply
class CLIP4ClipPreTrainedModel(PreTrainedModel, nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, cross_config, *inputs, **kwargs):
super(CLIP4ClipPreTrainedModel, self).__init__(cross_config)
self.cross_config = cross_config
self.clip = None
self.cross = None
@classmethod
def from_pretrained(cls, cross_model_name, state_dict=None, cache_dir=None, type_vocab_size=2, *inputs, **kwargs):
task_config = None
if "task_config" in kwargs.keys():
task_config = kwargs["task_config"]
if not hasattr(task_config, "local_rank"):
task_config.__dict__["local_rank"] = 0
elif task_config.local_rank == -1:
task_config.local_rank = 0
if state_dict is None: state_dict = {}
pretrained_clip_name = "ViT-B/32"
if hasattr(task_config, 'pretrained_clip_name'):
pretrained_clip_name = task_config.pretrained_clip_name
clip_state_dict = CLIP.get_config(pretrained_clip_name=pretrained_clip_name)
for key, val in clip_state_dict.items():
new_key = "clip." + key
if new_key not in state_dict:
state_dict[new_key] = val.clone()
cross_config, _ = CrossConfig.get_config(cross_model_name, cache_dir, type_vocab_size, state_dict=None, task_config=task_config)
model = cls(cross_config, clip_state_dict, *inputs, **kwargs)
## ===> Initialization trick [HARD CODE]
if model.linear_patch == "3d":
contain_conv2 = False
for key in state_dict.keys():
if key.find("visual.conv2.weight") > -1:
contain_conv2 = True
break
if contain_conv2 is False and hasattr(model.clip.visual, "conv2"):
cp_weight = state_dict["clip.visual.conv1.weight"].clone()
kernel_size = model.clip.visual.conv2.weight.size(2)
conv2_size = model.clip.visual.conv2.weight.size()
conv2_size = list(conv2_size)
left_conv2_size = conv2_size.copy()
right_conv2_size = conv2_size.copy()
left_conv2_size[2] = (kernel_size - 1) // 2
right_conv2_size[2] = kernel_size - 1 - left_conv2_size[2]
left_zeros, right_zeros = None, None
if left_conv2_size[2] > 0:
left_zeros = torch.zeros(*tuple(left_conv2_size), dtype=cp_weight.dtype, device=cp_weight.device)
if right_conv2_size[2] > 0:
right_zeros = torch.zeros(*tuple(right_conv2_size), dtype=cp_weight.dtype, device=cp_weight.device)
cat_list = []
if left_zeros != None: cat_list.append(left_zeros)
cat_list.append(cp_weight.unsqueeze(2))
if right_zeros != None: cat_list.append(right_zeros)
cp_weight = torch.cat(cat_list, dim=2)
state_dict["clip.visual.conv2.weight"] = cp_weight
if model.sim_header == 'tightTransf':
contain_cross = False
for key in state_dict.keys():
if key.find("cross.transformer") > -1:
contain_cross = True
break
if contain_cross is False:
for key, val in clip_state_dict.items():
if key == "positional_embedding":
state_dict["cross.embeddings.position_embeddings.weight"] = val.clone()
continue
if key.find("transformer.resblocks") == 0:
num_layer = int(key.split(".")[2])
# cut from beginning
if num_layer < task_config.cross_num_hidden_layers:
state_dict["cross."+key] = val.clone()
continue
if model.sim_header == "seqLSTM" or model.sim_header == "seqTransf":
contain_frame_position = False
for key in state_dict.keys():
if key.find("frame_position_embeddings") > -1:
contain_frame_position = True
break
if contain_frame_position is False:
for key, val in clip_state_dict.items():
if key == "positional_embedding":
state_dict["frame_position_embeddings.weight"] = val.clone()
continue
if model.sim_header == "seqTransf" and key.find("transformer.resblocks") == 0:
num_layer = int(key.split(".")[2])
# cut from beginning
if num_layer < task_config.cross_num_hidden_layers:
state_dict[key.replace("transformer.", "transformerClip.")] = val.clone()
continue
## <=== End of initialization trick
if state_dict is not None:
model = cls.init_preweight(model, state_dict, task_config=task_config)
return model
def show_log(task_config, info):
if task_config is None or task_config.local_rank == 0:
logger.warning(info)
def update_attr(target_name, target_config, target_attr_name, source_config, source_attr_name, default_value=None):
if hasattr(source_config, source_attr_name):
if default_value is None or getattr(source_config, source_attr_name) != default_value:
setattr(target_config, target_attr_name, getattr(source_config, source_attr_name))
show_log(source_config, "Set {}.{}: {}.".format(target_name,
target_attr_name, getattr(target_config, target_attr_name)))
return target_config
def check_attr(target_name, task_config):
return hasattr(task_config, target_name) and task_config.__dict__[target_name]
class CLIP4Clip(CLIP4ClipPreTrainedModel):
def __init__(self, cross_config, clip_state_dict, task_config):
super(CLIP4Clip, self).__init__(cross_config)
self.task_config = task_config
self.ignore_video_index = -1
assert self.task_config.max_words + self.task_config.max_frames <= cross_config.max_position_embeddings
self._stage_one = True
self._stage_two = False
show_log(task_config, "Stage-One:{}, Stage-Two:{}".format(self._stage_one, self._stage_two))
self.loose_type = False
if self._stage_one and check_attr('loose_type', self.task_config):
self.loose_type = True
show_log(task_config, "Test retrieval by loose type.")
# CLIP Encoders: From OpenAI: CLIP [https://github.com/openai/CLIP] ===>
vit = "visual.proj" in clip_state_dict
assert vit
if vit:
vision_width = clip_state_dict["visual.conv1.weight"].shape[0]
vision_layers = len(
[k for k in clip_state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = clip_state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((clip_state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [len(set(k.split(".")[2] for k in clip_state_dict if k.startswith(f"visual.layer{b}"))) for b in
[1, 2, 3, 4]]
vision_layers = tuple(counts)
vision_width = clip_state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round((clip_state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
vision_patch_size = None
assert output_width ** 2 + 1 == clip_state_dict["visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32
embed_dim = clip_state_dict["text_projection"].shape[1]
context_length = clip_state_dict["positional_embedding"].shape[0]
vocab_size = clip_state_dict["token_embedding.weight"].shape[0]
transformer_width = clip_state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in clip_state_dict if k.startswith(f"transformer.resblocks")))
show_log(task_config, "\t embed_dim: {}".format(embed_dim))
show_log(task_config, "\t image_resolution: {}".format(image_resolution))
show_log(task_config, "\t vision_layers: {}".format(vision_layers))
show_log(task_config, "\t vision_width: {}".format(vision_width))
show_log(task_config, "\t vision_patch_size: {}".format(vision_patch_size))
show_log(task_config, "\t context_length: {}".format(context_length))
show_log(task_config, "\t vocab_size: {}".format(vocab_size))
show_log(task_config, "\t transformer_width: {}".format(transformer_width))
show_log(task_config, "\t transformer_heads: {}".format(transformer_heads))
show_log(task_config, "\t transformer_layers: {}".format(transformer_layers))
self.linear_patch = '2d'
if hasattr(task_config, "linear_patch"):
self.linear_patch = task_config.linear_patch
show_log(task_config, "\t\t linear_patch: {}".format(self.linear_patch))
# use .float() to avoid overflow/underflow from fp16 weight. https://github.com/openai/CLIP/issues/40
cut_top_layer = 0
show_log(task_config, "\t cut_top_layer: {}".format(cut_top_layer))
self.clip = CLIP(
embed_dim,
image_resolution, vision_layers-cut_top_layer, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers-cut_top_layer,
linear_patch=self.linear_patch
).float()
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in clip_state_dict:
del clip_state_dict[key]
convert_weights(self.clip)
# <=== End of CLIP Encoders
self.sim_header = 'meanP'
if hasattr(task_config, "sim_header"):
self.sim_header = task_config.sim_header
show_log(task_config, "\t sim_header: {}".format(self.sim_header))
if self.sim_header == "tightTransf": assert self.loose_type is False
cross_config.max_position_embeddings = context_length
if self.loose_type is False:
# Cross Encoder ===>
cross_config = update_attr("cross_config", cross_config, "num_hidden_layers", self.task_config, "cross_num_hidden_layers")
self.cross = CrossModel(cross_config)
# <=== End of Cross Encoder
self.similarity_dense = nn.Linear(cross_config.hidden_size, 1)
if self.sim_header == "seqLSTM" or self.sim_header == "seqTransf":
self.frame_position_embeddings = nn.Embedding(cross_config.max_position_embeddings, cross_config.hidden_size)
if self.sim_header == "seqTransf":
self.transformerClip = TransformerClip(width=transformer_width, layers=self.task_config.cross_num_hidden_layers,
heads=transformer_heads, )
if self.sim_header == "seqLSTM":
self.lstm_visual = nn.LSTM(input_size=cross_config.hidden_size, hidden_size=cross_config.hidden_size,
batch_first=True, bidirectional=False, num_layers=1)
self.loss_fct = CrossEn()
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids, attention_mask, video, video_mask=None):
input_ids = input_ids.view(-1, input_ids.shape[-1])
token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1])
attention_mask = attention_mask.view(-1, attention_mask.shape[-1])
video_mask = video_mask.view(-1, video_mask.shape[-1])
# T x 3 x H x W
video = torch.as_tensor(video).float()
b, pair, bs, ts, channel, h, w = video.shape
video = video.view(b * pair * bs * ts, channel, h, w)
video_frame = bs * ts
sequence_output, visual_output = self.get_sequence_visual_output(input_ids, token_type_ids, attention_mask,
video, video_mask, shaped=True, video_frame=video_frame)
if self.training:
loss = 0.
sim_matrix, *_tmp = self.get_similarity_logits(sequence_output, visual_output, attention_mask, video_mask,
shaped=True, loose_type=self.loose_type)
sim_loss1 = self.loss_fct(sim_matrix)
sim_loss2 = self.loss_fct(sim_matrix.T)
sim_loss = (sim_loss1 + sim_loss2) / 2
loss += sim_loss
return loss
else:
return None
def get_sequence_output(self, input_ids, token_type_ids, attention_mask, shaped=False):
if shaped is False:
input_ids = input_ids.view(-1, input_ids.shape[-1])
token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1])
attention_mask = attention_mask.view(-1, attention_mask.shape[-1])
bs_pair = input_ids.size(0)
sequence_hidden = self.clip.encode_text(input_ids).float()
sequence_hidden = sequence_hidden.view(bs_pair, -1, sequence_hidden.size(-1))
return sequence_hidden
def get_visual_output(self, video, video_mask, shaped=False, video_frame=-1):
if shaped is False:
video_mask = video_mask.view(-1, video_mask.shape[-1])
video = torch.as_tensor(video).float()
b, pair, bs, ts, channel, h, w = video.shape
video = video.view(b * pair * bs * ts, channel, h, w)
video_frame = bs * ts
bs_pair = video_mask.size(0)
visual_hidden = self.clip.encode_image(video, video_frame=video_frame).float()
visual_hidden = visual_hidden.view(bs_pair, -1, visual_hidden.size(-1))
return visual_hidden
def get_sequence_visual_output(self, input_ids, token_type_ids, attention_mask, video, video_mask, shaped=False, video_frame=-1):
if shaped is False:
input_ids = input_ids.view(-1, input_ids.shape[-1])
token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1])
attention_mask = attention_mask.view(-1, attention_mask.shape[-1])
video_mask = video_mask.view(-1, video_mask.shape[-1])
video = torch.as_tensor(video).float()
b, pair, bs, ts, channel, h, w = video.shape
video = video.view(b * pair * bs * ts, channel, h, w)
video_frame = bs * ts
sequence_output = self.get_sequence_output(input_ids, token_type_ids, attention_mask, shaped=True)
visual_output = self.get_visual_output(video, video_mask, shaped=True, video_frame=video_frame)
return sequence_output, visual_output
def _get_cross_output(self, sequence_output, visual_output, attention_mask, video_mask):
concat_features = torch.cat((sequence_output, visual_output), dim=1) # concatnate tokens and frames
concat_mask = torch.cat((attention_mask, video_mask), dim=1)
text_type_ = torch.zeros_like(attention_mask)
video_type_ = torch.ones_like(video_mask)
concat_type = torch.cat((text_type_, video_type_), dim=1)
cross_layers, pooled_output = self.cross(concat_features, concat_type, concat_mask, output_all_encoded_layers=True)
cross_output = cross_layers[-1]
return cross_output, pooled_output, concat_mask
def _mean_pooling_for_similarity_sequence(self, sequence_output, attention_mask):
attention_mask_un = attention_mask.to(dtype=torch.float).unsqueeze(-1)
attention_mask_un[:, 0, :] = 0.
sequence_output = sequence_output * attention_mask_un
text_out = torch.sum(sequence_output, dim=1) / torch.sum(attention_mask_un, dim=1, dtype=torch.float)
return text_out
def _mean_pooling_for_similarity_visual(self, visual_output, video_mask,):
video_mask_un = video_mask.to(dtype=torch.float).unsqueeze(-1)
visual_output = visual_output * video_mask_un
video_mask_un_sum = torch.sum(video_mask_un, dim=1, dtype=torch.float)
video_mask_un_sum[video_mask_un_sum == 0.] = 1.
video_out = torch.sum(visual_output, dim=1) / video_mask_un_sum
return video_out
def _mean_pooling_for_similarity(self, sequence_output, visual_output, attention_mask, video_mask,):
text_out = self._mean_pooling_for_similarity_sequence(sequence_output, attention_mask)
video_out = self._mean_pooling_for_similarity_visual(visual_output, video_mask)
return text_out, video_out
def _loose_similarity(self, sequence_output, visual_output, attention_mask, video_mask, sim_header="meanP"):
sequence_output, visual_output = sequence_output.contiguous(), visual_output.contiguous()
if sim_header == "meanP":
# Default: Parameter-free type
pass
elif sim_header == "seqLSTM":
# Sequential type: LSTM
visual_output_original = visual_output
visual_output = pack_padded_sequence(visual_output, torch.sum(video_mask, dim=-1).cpu(),
batch_first=True, enforce_sorted=False)
visual_output, _ = self.lstm_visual(visual_output)
if self.training: self.lstm_visual.flatten_parameters()
visual_output, _ = pad_packed_sequence(visual_output, batch_first=True)
visual_output = torch.cat((visual_output, visual_output_original[:, visual_output.size(1):, ...].contiguous()), dim=1)
visual_output = visual_output + visual_output_original
elif sim_header == "seqTransf":
# Sequential type: Transformer Encoder
visual_output_original = visual_output
seq_length = visual_output.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=visual_output.device)
position_ids = position_ids.unsqueeze(0).expand(visual_output.size(0), -1)
frame_position_embeddings = self.frame_position_embeddings(position_ids)
visual_output = visual_output + frame_position_embeddings
extended_video_mask = (1.0 - video_mask.unsqueeze(1)) * -1000000.0
extended_video_mask = extended_video_mask.expand(-1, video_mask.size(1), -1)
visual_output = visual_output.permute(1, 0, 2) # NLD -> LND
visual_output = self.transformerClip(visual_output, extended_video_mask)
visual_output = visual_output.permute(1, 0, 2) # LND -> NLD
visual_output = visual_output + visual_output_original
if self.training:
visual_output = allgather(visual_output, self.task_config)
video_mask = allgather(video_mask, self.task_config)
sequence_output = allgather(sequence_output, self.task_config)
if hasattr(self.task_config, 'world_size') and self.task_config.world_size > 1:
torch.distributed.barrier()
visual_output = visual_output / visual_output.norm(dim=-1, keepdim=True)
visual_output = self._mean_pooling_for_similarity_visual(visual_output, video_mask)
visual_output = visual_output / visual_output.norm(dim=-1, keepdim=True)
sequence_output = sequence_output.squeeze(1)
sequence_output = sequence_output / sequence_output.norm(dim=-1, keepdim=True)
logit_scale = self.clip.logit_scale.exp()
retrieve_logits = logit_scale * torch.matmul(sequence_output, visual_output.t())
return retrieve_logits
def _cross_similarity(self, sequence_output, visual_output, attention_mask, video_mask):
sequence_output, visual_output = sequence_output.contiguous(), visual_output.contiguous()
b_text, s_text, h_text = sequence_output.size()
b_visual, s_visual, h_visual = visual_output.size()
retrieve_logits_list = []
step_size = b_text # set smaller to reduce memory cost
split_size = [step_size] * (b_text // step_size)
release_size = b_text - sum(split_size)
if release_size > 0:
split_size += [release_size]
# due to clip text branch retrun the last hidden
attention_mask = torch.ones(sequence_output.size(0), 1)\
.to(device=attention_mask.device, dtype=attention_mask.dtype)
sequence_output_splits = torch.split(sequence_output, split_size, dim=0)
attention_mask_splits = torch.split(attention_mask, split_size, dim=0)
for i in range(len(split_size)):
sequence_output_row = sequence_output_splits[i]
attention_mask_row = attention_mask_splits[i]
sequence_output_l = sequence_output_row.unsqueeze(1).repeat(1, b_visual, 1, 1)
sequence_output_l = sequence_output_l.view(-1, s_text, h_text)
attention_mask_l = attention_mask_row.unsqueeze(1).repeat(1, b_visual, 1)
attention_mask_l = attention_mask_l.view(-1, s_text)
step_truth = sequence_output_row.size(0)
visual_output_r = visual_output.unsqueeze(0).repeat(step_truth, 1, 1, 1)
visual_output_r = visual_output_r.view(-1, s_visual, h_visual)
video_mask_r = video_mask.unsqueeze(0).repeat(step_truth, 1, 1)
video_mask_r = video_mask_r.view(-1, s_visual)
cross_output, pooled_output, concat_mask = \
self._get_cross_output(sequence_output_l, visual_output_r, attention_mask_l, video_mask_r)
retrieve_logits_row = self.similarity_dense(pooled_output).squeeze(-1).view(step_truth, b_visual)
retrieve_logits_list.append(retrieve_logits_row)
retrieve_logits = torch.cat(retrieve_logits_list, dim=0)
return retrieve_logits
def get_similarity_logits(self, sequence_output, visual_output, attention_mask, video_mask, shaped=False, loose_type=False):
if shaped is False:
attention_mask = attention_mask.view(-1, attention_mask.shape[-1])
video_mask = video_mask.view(-1, video_mask.shape[-1])
contrastive_direction = ()
if loose_type:
assert self.sim_header in ["meanP", "seqLSTM", "seqTransf"]
retrieve_logits = self._loose_similarity(sequence_output, visual_output, attention_mask, video_mask, sim_header=self.sim_header)
else:
assert self.sim_header in ["tightTransf"]
retrieve_logits = self._cross_similarity(sequence_output, visual_output, attention_mask, video_mask, )
return retrieve_logits, contrastive_direction
|