File size: 14,038 Bytes
e24b799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
from typing import Any
import torch
from torch import nn
import math
from fractions import Fraction
from transformers.models.blip_2.configuration_blip_2 import Blip2QFormerConfig
from transformers.models.blip_2.modeling_blip_2 import Blip2QFormerModel
import torch.nn.functional as F
class QFormerAttention(nn.Module):
"""Multi-headed self-attention for QFormer with SDPA/Flash Attention support"""
def __init__(self, hidden_size, num_heads, attn_bias=False, attention_dropout=0.0):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
self.attention_dropout = attention_dropout
if self.head_dim * num_heads != hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {hidden_size} "
f"and `num_heads`: {num_heads})."
)
# Separate Q, K, V projections
self.q_proj = nn.Linear(hidden_size, hidden_size, bias=attn_bias)
self.k_proj = nn.Linear(hidden_size, hidden_size, bias=attn_bias)
self.v_proj = nn.Linear(hidden_size, hidden_size, bias=attn_bias)
self.o_proj = nn.Linear(hidden_size, hidden_size, bias=attn_bias)
def forward(self, hidden_states, attention_mask=None):
"""
Args:
hidden_states: (B, seq_len, hidden_size)
attention_mask: optional attention mask
Returns:
(B, seq_len, hidden_size)
"""
batch_size, seq_len, _ = hidden_states.shape
# Project and reshape to (B, num_heads, seq_len, head_dim)
query_states = self.q_proj(hidden_states).view(
batch_size, seq_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(
batch_size, seq_len, self.num_heads, self.head_dim
).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(
batch_size, seq_len, self.num_heads, self.head_dim
).transpose(1, 2)
# Use PyTorch's scaled_dot_product_attention (SDPA)
# This automatically uses Flash Attention when available
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=False,
)
# Reshape back to (B, seq_len, hidden_size)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output
class QFormerMLP(nn.Module):
"""MLP for QFormer"""
def __init__(self, hidden_size, intermediate_size, mlp_bias=False):
super().__init__()
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=mlp_bias)
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=mlp_bias)
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=mlp_bias)
self.act_fn = nn.GELU()
def forward(self, x):
"""
Args:
x: (B, seq_len, hidden_size)
Returns:
(B, seq_len, hidden_size)
"""
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class QFormerLayer(nn.Module):
"""Single transformer layer with self-attention and MLP"""
def __init__(self, hidden_size, num_heads, intermediate_size):
super().__init__()
self.hidden_size = hidden_size
self.attention = QFormerAttention(hidden_size, num_heads)
self.attention_norm = nn.LayerNorm(hidden_size)
self.mlp = QFormerMLP(hidden_size, intermediate_size)
self.mlp_norm = nn.LayerNorm(hidden_size)
def forward(self, hidden_states, attention_mask=None):
"""
Args:
hidden_states: (B, seq_len, hidden_size)
attention_mask: optional attention mask
Returns:
(B, seq_len, hidden_size)
"""
# Self-attention with residual and pre-norm
residual = hidden_states
hidden_states = self.attention_norm(hidden_states)
hidden_states: Any = self.attention(hidden_states, attention_mask)
hidden_states = residual + hidden_states
# MLP with residual and pre-norm
residual = hidden_states
hidden_states = self.mlp_norm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class SimplifiedQFormer(nn.Module):
"""
Simplified QFormer with full self-attention between queries and inputs.
This replaces Blip2QFormerModel with a cleaner implementation.
"""
def __init__(self, hidden_size, num_heads=8, num_layers=1, intermediate_size=None):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.num_layers = num_layers
if intermediate_size is None:
intermediate_size = hidden_size * 4
# Create transformer layers
self.layers = nn.ModuleList([
QFormerLayer(hidden_size, num_heads, intermediate_size)
for _ in range(num_layers)
])
self.norm = nn.LayerNorm(hidden_size)
def forward(self, query_embeds, encoder_hidden_states):
"""
Args:
query_embeds: (B, num_queries, hidden_size) - learnable queries
encoder_hidden_states: (B, num_tokens, hidden_size) - input features
Returns:
(B, num_queries, hidden_size) - output features
"""
# Concatenate queries and encoder states for full self-attention
# Shape: (B, num_queries + num_tokens, hidden_size)
hidden_states = torch.cat([query_embeds, encoder_hidden_states], dim=1)
# Apply transformer layers
for layer in self.layers:
hidden_states = layer(hidden_states)
# Extract only the query outputs
num_queries = query_embeds.shape[1]
output = hidden_states[:, :num_queries, :]
return self.norm(output)
class InterpolateDownsampler:
def __init__(self, config, mode="area"):
self.orig_image_side = config.vision_config.image_size // config.vision_config.patch_size
self.new_image_side = int(self.orig_image_side * Fraction(config.downsample_rate))
self.mode = mode
def __call__(self, image_features):
batch_size, _, dim = image_features.size()
up_shape = [batch_size] + [self.orig_image_side] * 2 + [dim]
# interpolate expects B,C,H,W
large_image_permuted = image_features.view(up_shape).permute(0,3,1,2)
small_image_permuted = torch.nn.functional.interpolate(
large_image_permuted, size=(self.new_image_side, self.new_image_side),
mode=self.mode,
)
# back to B,H*W,C
final = small_image_permuted.permute(0,2,3,1).flatten(1,2)
return final
class QFormerDownsampler(nn.Module):
def __init__(self, config):
super().__init__()
llm_hidden_size = config.text_config.hidden_size
self.interpolate = InterpolateDownsampler(config)
configuration = Blip2QFormerConfig(hidden_size=llm_hidden_size,
num_attention_heads=32,
intermediate_size=4096,
num_hidden_layers=1,
encoder_hidden_size=llm_hidden_size,
cross_attention_frequency=1,
max_position_embeddings=2048,
use_qformer_text_input=False,
)
self.qformer = Blip2QFormerModel(configuration)
self.image_side = config.vision_config.image_size // config.vision_config.patch_size
down = Fraction(config.downsample_rate)
query_side = self.image_side * down
assert query_side.denominator == 1, "downsample_rate must make query_side an integer"
self.query_side = query_side.numerator
# query length is cubical for seamless integration with llava next
self.query_length = self.query_side ** 2
embed_std = 1 / math.sqrt(llm_hidden_size)
self.query = nn.Parameter(torch.randn(1, self.query_length, llm_hidden_size) * embed_std)
# qformer model doesn't have positional embeddings, adding to the flat patches
self.image_positions = nn.Parameter(torch.randn(1, self.image_side ** 2, llm_hidden_size) * embed_std)
def forward(self, image_features):
batch_size, image_size, dim = image_features.size()
interpolated = self.interpolate(image_features)
query_output = self.qformer(
query_embeds=self.query + interpolated,
encoder_hidden_states=image_features + self.image_positions,
return_dict=True,
).last_hidden_state
return query_output + interpolated
class WindowQFormerDownsampler(nn.Module):
def __init__(self, config, use_simplified_qformer=False):
super().__init__()
llm_hidden_size = config.text_config.hidden_size
vision_hidden_size = config.vision_config.hidden_size
self.interpolate = InterpolateDownsampler(config)
self.use_simplified_qformer = use_simplified_qformer
# Choose between SimplifiedQFormer and Blip2QFormerModel
if use_simplified_qformer:
# Use our simplified QFormer with full self-attention
self.qformer = SimplifiedQFormer(
hidden_size=vision_hidden_size,
num_heads=18,
num_layers=1,
intermediate_size=4096
)
else:
# Use original Blip2QFormerModel with cross-attention
configuration = Blip2QFormerConfig(
hidden_size=vision_hidden_size,
num_attention_heads=16,
intermediate_size=4096,
num_hidden_layers=1,
encoder_hidden_size=vision_hidden_size,
cross_attention_frequency=1,
max_position_embeddings=2048,
use_qformer_text_input=False,
)
self.qformer = Blip2QFormerModel(configuration)
self.image_side = config.vision_config.image_size // config.vision_config.patch_size
downsample_rate = Fraction(config.downsample_rate, _normalize=False)
self.query_side, self.window_side = downsample_rate.as_integer_ratio()
# query length is cubical for seamless integration with llava next
self.query_length = self.query_side ** 2
embed_std = 1 / math.sqrt(vision_hidden_size)
self.query = nn.Parameter(torch.randn(1, self.query_length, vision_hidden_size) * embed_std)
# qformer model doesn't have positional embeddings, adding to the flat patches
self.image_positions = nn.Parameter(torch.randn(1, self.window_side ** 2, vision_hidden_size) * embed_std)
self.out_linear = nn.Linear(vision_hidden_size, llm_hidden_size, bias=False)
def _win(self, x, side, win):
"""
(B, side*side, C) raster -> (B*n*n, win*win, C) where n=side//win
windows are raster-ordered, and tokens inside each window are raster-ordered.
"""
B, _, C = x.shape
n = side // win
return (
x.view(B, side, side, C)
.view(B, n, win, n, win, C)
.transpose(2, 3) # (B, n, n, win, win, C)
.flatten(0, 2) # (B*n*n, win, win, C)
.flatten(1, 2) # (B*n*n, win*win, C)
)
def _unwin(self, xw, n, win):
"""
(B*n*n, win*win, C) -> (B, (n*win)^2, C) raster
"""
Bnn, _, C = xw.shape
assert Bnn % (n * n) == 0
B = Bnn // (n * n)
side = n * win
return (
xw.view(B, n, n, win, win, C)
.transpose(2, 3) # (B, n, win, n, win, C)
.contiguous()
.view(B, side, side, C)
.flatten(1, 2)
)
def forward(self, image_features):
B, HW, C = image_features.shape
assert HW == self.image_side * self.image_side
n = self.image_side // self.window_side
enc = self._win(image_features, self.image_side, self.window_side) # (B*n^2, w^2, C)
interpolated = self.interpolate(image_features) # (B, new_side^2, C) raster
new_side = n * self.query_side
interpolated_w = self._win(interpolated, new_side, self.query_side) # (B*n^2, q^2, C)
# Apply QFormer based on the chosen mechanism
if self.use_simplified_qformer:
# SimplifiedQFormer: full self-attention between queries and inputs
# Broadcasting handles batch dimension automatically
out_w = self.qformer(
query_embeds=self.query + interpolated_w,
encoder_hidden_states=enc + self.image_positions
) # (B*n^2, q^2, C)
else:
# Blip2QFormerModel: cross-attention mechanism
out_w = self.qformer(
query_embeds=self.query + interpolated_w,
encoder_hidden_states=enc + self.image_positions,
return_dict=True,
).last_hidden_state # (B*n^2, q^2, C)
out = self._unwin(out_w, n=n, win=self.query_side) # (B, new_side^2, C) raster
return self.out_linear(out + interpolated)
|