File size: 14,038 Bytes
e24b799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from typing import Any
import torch
from torch import nn
import math
from fractions import Fraction
from transformers.models.blip_2.configuration_blip_2 import Blip2QFormerConfig
from transformers.models.blip_2.modeling_blip_2 import Blip2QFormerModel
import torch.nn.functional as F

class QFormerAttention(nn.Module):
    """Multi-headed self-attention for QFormer with SDPA/Flash Attention support"""
    
    def __init__(self, hidden_size, num_heads, attn_bias=False, attention_dropout=0.0):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_heads = num_heads
        self.head_dim = hidden_size // num_heads
        self.attention_dropout = attention_dropout
        
        if self.head_dim * num_heads != hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {hidden_size} "
                f"and `num_heads`: {num_heads})."
            )
        
        # Separate Q, K, V projections
        self.q_proj = nn.Linear(hidden_size, hidden_size, bias=attn_bias)
        self.k_proj = nn.Linear(hidden_size, hidden_size, bias=attn_bias)
        self.v_proj = nn.Linear(hidden_size, hidden_size, bias=attn_bias)
        self.o_proj = nn.Linear(hidden_size, hidden_size, bias=attn_bias)
    
    def forward(self, hidden_states, attention_mask=None):
        """
        Args:
            hidden_states: (B, seq_len, hidden_size)
            attention_mask: optional attention mask
        Returns:
            (B, seq_len, hidden_size)
        """
        batch_size, seq_len, _ = hidden_states.shape
        
        # Project and reshape to (B, num_heads, seq_len, head_dim)
        query_states = self.q_proj(hidden_states).view(
            batch_size, seq_len, self.num_heads, self.head_dim
        ).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(
            batch_size, seq_len, self.num_heads, self.head_dim
        ).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(
            batch_size, seq_len, self.num_heads, self.head_dim
        ).transpose(1, 2)
        
        # Use PyTorch's scaled_dot_product_attention (SDPA)
        # This automatically uses Flash Attention when available
        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=attention_mask,
            dropout_p=self.attention_dropout if self.training else 0.0,
            is_causal=False,
        )
        
        # Reshape back to (B, seq_len, hidden_size)
        attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size)
        attn_output = self.o_proj(attn_output)
        
        return attn_output


class QFormerMLP(nn.Module):
    """MLP for QFormer"""
    
    def __init__(self, hidden_size, intermediate_size, mlp_bias=False):
        super().__init__()
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=mlp_bias)
        self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=mlp_bias)
        self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=mlp_bias)
        self.act_fn = nn.GELU()
    
    def forward(self, x):
        """
        Args:
            x: (B, seq_len, hidden_size)
        Returns:
            (B, seq_len, hidden_size)
        """
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


class QFormerLayer(nn.Module):
    """Single transformer layer with self-attention and MLP"""
    
    def __init__(self, hidden_size, num_heads, intermediate_size):
        super().__init__()
        self.hidden_size = hidden_size
        
        self.attention = QFormerAttention(hidden_size, num_heads)
        self.attention_norm = nn.LayerNorm(hidden_size)
        
        self.mlp = QFormerMLP(hidden_size, intermediate_size)
        self.mlp_norm = nn.LayerNorm(hidden_size)
    
    def forward(self, hidden_states, attention_mask=None):
        """
        Args:
            hidden_states: (B, seq_len, hidden_size)
            attention_mask: optional attention mask
        Returns:
            (B, seq_len, hidden_size)
        """
        # Self-attention with residual and pre-norm
        residual = hidden_states
        hidden_states = self.attention_norm(hidden_states)
        hidden_states: Any = self.attention(hidden_states, attention_mask)
        hidden_states = residual + hidden_states
        
        # MLP with residual and pre-norm
        residual = hidden_states
        hidden_states = self.mlp_norm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        
        return hidden_states


class SimplifiedQFormer(nn.Module):
    """
    Simplified QFormer with full self-attention between queries and inputs.
    This replaces Blip2QFormerModel with a cleaner implementation.
    """
    
    def __init__(self, hidden_size, num_heads=8, num_layers=1, intermediate_size=None):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_heads = num_heads
        self.num_layers = num_layers
        
        if intermediate_size is None:
            intermediate_size = hidden_size * 4
        
        # Create transformer layers
        self.layers = nn.ModuleList([
            QFormerLayer(hidden_size, num_heads, intermediate_size)
            for _ in range(num_layers)
        ])
        
        self.norm = nn.LayerNorm(hidden_size)
    
    def forward(self, query_embeds, encoder_hidden_states):
        """
        Args:
            query_embeds: (B, num_queries, hidden_size) - learnable queries
            encoder_hidden_states: (B, num_tokens, hidden_size) - input features
        
        Returns:
            (B, num_queries, hidden_size) - output features
        """
        # Concatenate queries and encoder states for full self-attention
        # Shape: (B, num_queries + num_tokens, hidden_size)
        hidden_states = torch.cat([query_embeds, encoder_hidden_states], dim=1)
        
        # Apply transformer layers
        for layer in self.layers:
            hidden_states = layer(hidden_states)
        
        # Extract only the query outputs
        num_queries = query_embeds.shape[1]
        output = hidden_states[:, :num_queries, :]
        
        return self.norm(output)



class InterpolateDownsampler:
    def __init__(self, config, mode="area"):
        self.orig_image_side = config.vision_config.image_size // config.vision_config.patch_size
        self.new_image_side = int(self.orig_image_side * Fraction(config.downsample_rate))
        self.mode = mode
    
    def __call__(self, image_features):
        batch_size, _, dim = image_features.size()
        up_shape = [batch_size] + [self.orig_image_side] * 2 + [dim]
        # interpolate expects B,C,H,W
        large_image_permuted = image_features.view(up_shape).permute(0,3,1,2)
        small_image_permuted = torch.nn.functional.interpolate(
                large_image_permuted, size=(self.new_image_side, self.new_image_side),
                mode=self.mode,
        )
        # back to B,H*W,C
        final = small_image_permuted.permute(0,2,3,1).flatten(1,2)
        return final
    

class QFormerDownsampler(nn.Module):
    def __init__(self, config):
        super().__init__()
        llm_hidden_size = config.text_config.hidden_size
        self.interpolate = InterpolateDownsampler(config)
        
        configuration = Blip2QFormerConfig(hidden_size=llm_hidden_size, 
                                        num_attention_heads=32,
                                        intermediate_size=4096, 
                                        num_hidden_layers=1,
                                        encoder_hidden_size=llm_hidden_size, 
                                        cross_attention_frequency=1,
                                        max_position_embeddings=2048,
                                        use_qformer_text_input=False,
                                    )
        self.qformer = Blip2QFormerModel(configuration)

        
        self.image_side = config.vision_config.image_size // config.vision_config.patch_size
        down = Fraction(config.downsample_rate)
        query_side = self.image_side * down
        assert query_side.denominator == 1, "downsample_rate must make query_side an integer"
        self.query_side = query_side.numerator
        # query length is cubical for seamless integration with llava next
        self.query_length = self.query_side  ** 2
        embed_std = 1 / math.sqrt(llm_hidden_size)
        self.query = nn.Parameter(torch.randn(1, self.query_length, llm_hidden_size) * embed_std)
        # qformer model doesn't have positional embeddings, adding to the flat patches
        self.image_positions = nn.Parameter(torch.randn(1, self.image_side ** 2, llm_hidden_size) * embed_std)


    def forward(self, image_features):
        batch_size, image_size, dim = image_features.size()
        interpolated = self.interpolate(image_features)
        query_output = self.qformer(
            query_embeds=self.query + interpolated,
            encoder_hidden_states=image_features + self.image_positions,
            return_dict=True,
        ).last_hidden_state
        
        return query_output + interpolated

class WindowQFormerDownsampler(nn.Module):
    def __init__(self, config, use_simplified_qformer=False):
        super().__init__()
        llm_hidden_size = config.text_config.hidden_size
        vision_hidden_size = config.vision_config.hidden_size
        self.interpolate = InterpolateDownsampler(config)
        self.use_simplified_qformer = use_simplified_qformer
        
        # Choose between SimplifiedQFormer and Blip2QFormerModel
        if use_simplified_qformer:
            # Use our simplified QFormer with full self-attention
            self.qformer = SimplifiedQFormer(
                hidden_size=vision_hidden_size,
                num_heads=18,
                num_layers=1,
                intermediate_size=4096
            )
        else:
            # Use original Blip2QFormerModel with cross-attention
            configuration = Blip2QFormerConfig(
                hidden_size=vision_hidden_size,
                num_attention_heads=16,
                intermediate_size=4096,
                num_hidden_layers=1,
                encoder_hidden_size=vision_hidden_size,
                cross_attention_frequency=1,
                max_position_embeddings=2048,
                use_qformer_text_input=False,
            )
            self.qformer = Blip2QFormerModel(configuration)

        self.image_side = config.vision_config.image_size // config.vision_config.patch_size
        downsample_rate = Fraction(config.downsample_rate, _normalize=False)
        self.query_side, self.window_side = downsample_rate.as_integer_ratio()
        # query length is cubical for seamless integration with llava next
        self.query_length = self.query_side  ** 2
        embed_std = 1 / math.sqrt(vision_hidden_size)
        self.query = nn.Parameter(torch.randn(1, self.query_length, vision_hidden_size) * embed_std)
        # qformer model doesn't have positional embeddings, adding to the flat patches
        self.image_positions = nn.Parameter(torch.randn(1, self.window_side ** 2, vision_hidden_size) * embed_std)
        self.out_linear = nn.Linear(vision_hidden_size, llm_hidden_size, bias=False)


    def _win(self, x, side, win):
        """
        (B, side*side, C) raster -> (B*n*n, win*win, C) where n=side//win
        windows are raster-ordered, and tokens inside each window are raster-ordered.
        """
        B, _, C = x.shape
        n = side // win
        return (
            x.view(B, side, side, C)
            .view(B, n, win, n, win, C)
            .transpose(2, 3)          # (B, n, n, win, win, C)
            .flatten(0, 2)            # (B*n*n, win, win, C)
            .flatten(1, 2)            # (B*n*n, win*win, C)
        )

    def _unwin(self, xw, n, win):
        """
        (B*n*n, win*win, C) -> (B, (n*win)^2, C) raster
        """
        Bnn, _, C = xw.shape
        assert Bnn % (n * n) == 0
        B = Bnn // (n * n)
        side = n * win
        return (
            xw.view(B, n, n, win, win, C)
            .transpose(2, 3)                 # (B, n, win, n, win, C)
            .contiguous()
            .view(B, side, side, C)
            .flatten(1, 2)
        )



    def forward(self, image_features):
        B, HW, C = image_features.shape
        assert HW == self.image_side * self.image_side
        n = self.image_side // self.window_side

        enc = self._win(image_features, self.image_side, self.window_side)  # (B*n^2, w^2, C)

        interpolated = self.interpolate(image_features)  # (B, new_side^2, C) raster
        new_side = n * self.query_side
        interpolated_w = self._win(interpolated, new_side, self.query_side)  # (B*n^2, q^2, C)

        # Apply QFormer based on the chosen mechanism
        if self.use_simplified_qformer:
            # SimplifiedQFormer: full self-attention between queries and inputs
            # Broadcasting handles batch dimension automatically
            out_w = self.qformer(
                query_embeds=self.query + interpolated_w,
                encoder_hidden_states=enc + self.image_positions
            )  # (B*n^2, q^2, C)
        else:
            # Blip2QFormerModel: cross-attention mechanism
            out_w = self.qformer(
                query_embeds=self.query + interpolated_w,
                encoder_hidden_states=enc + self.image_positions,
                return_dict=True,
            ).last_hidden_state  # (B*n^2, q^2, C)

        out = self._unwin(out_w, n=n, win=self.query_side)  # (B, new_side^2, C) raster

        return self.out_linear(out + interpolated)