firework8 commited on
Commit
ea97b47
·
verified ·
1 Parent(s): 600d63e

Upload 122 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. finegym/b_1/20250624_084232.log +0 -0
  2. finegym/b_1/20250624_084232.log.json +0 -0
  3. finegym/b_1/b_1.py +113 -0
  4. finegym/b_1/best_pred.pkl +3 -0
  5. finegym/b_1/best_top1_acc_epoch_138.pth +3 -0
  6. finegym/b_2/20250624_084254.log +0 -0
  7. finegym/b_2/20250624_084254.log.json +0 -0
  8. finegym/b_2/b_2.py +113 -0
  9. finegym/b_2/best_pred.pkl +3 -0
  10. finegym/b_2/best_top1_acc_epoch_139.pth +3 -0
  11. finegym/b_3/20250624_084158.log +0 -0
  12. finegym/b_3/20250624_084158.log.json +0 -0
  13. finegym/b_3/b_3.py +113 -0
  14. finegym/b_3/best_pred.pkl +3 -0
  15. finegym/b_3/best_top1_acc_epoch_148.pth +3 -0
  16. finegym/bm/20250624_101409.log +0 -0
  17. finegym/bm/20250624_101409.log.json +0 -0
  18. finegym/bm/best_pred.pkl +3 -0
  19. finegym/bm/best_top1_acc_epoch_148.pth +3 -0
  20. finegym/bm/bm.py +113 -0
  21. finegym/finegym_ensemble.py +68 -0
  22. finegym/j_1/20250624_084414.log +0 -0
  23. finegym/j_1/20250624_084414.log.json +0 -0
  24. finegym/j_1/best_pred.pkl +3 -0
  25. finegym/j_1/best_top1_acc_epoch_150.pth +3 -0
  26. finegym/j_1/j_1.py +113 -0
  27. finegym/j_2/20250624_084315.log +0 -0
  28. finegym/j_2/20250624_084315.log.json +0 -0
  29. finegym/j_2/best_pred.pkl +3 -0
  30. finegym/j_2/best_top1_acc_epoch_150.pth +3 -0
  31. finegym/j_2/j_2.py +113 -0
  32. finegym/j_3/20250624_084345.log +0 -0
  33. finegym/j_3/20250624_084345.log.json +0 -0
  34. finegym/j_3/best_pred.pkl +3 -0
  35. finegym/j_3/best_top1_acc_epoch_150.pth +3 -0
  36. finegym/j_3/j_3.py +113 -0
  37. finegym/jm/20250624_101434.log +0 -0
  38. finegym/jm/20250624_101434.log.json +0 -0
  39. finegym/jm/best_pred.pkl +3 -0
  40. finegym/jm/best_top1_acc_epoch_147.pth +3 -0
  41. finegym/jm/jm.py +113 -0
  42. finegym/k_1/20250624_101323.log +0 -0
  43. finegym/k_1/20250624_101323.log.json +0 -0
  44. finegym/k_1/best_pred.pkl +3 -0
  45. finegym/k_1/best_top1_acc_epoch_150.pth +3 -0
  46. finegym/k_1/k_1.py +113 -0
  47. finegym/k_2/20250624_101213.log +0 -0
  48. finegym/k_2/20250624_101213.log.json +0 -0
  49. finegym/k_2/best_pred.pkl +3 -0
  50. finegym/k_2/best_top1_acc_epoch_150.pth +3 -0
finegym/b_1/20250624_084232.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/b_1/20250624_084232.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/b_1/b_1.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'b'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_aclnet/finegym/b_1'
4
+ model = dict(
5
+ type='RecognizerGCN',
6
+ backbone=dict(
7
+ type='GCN_Module',
8
+ gcn_ratio=0.125,
9
+ gcn_ctr='T',
10
+ gcn_ada='T',
11
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
12
+ graph_cfg=dict(
13
+ layout='coco_new',
14
+ mode='random',
15
+ num_filter=8,
16
+ init_off=0.04,
17
+ init_std=0.02)),
18
+ cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
19
+ dataset_type = 'PoseDataset'
20
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
21
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
22
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
23
+ train_pipeline = [
24
+ dict(type='UniformSampleFrames', clip_len=100),
25
+ dict(type='PoseDecode'),
26
+ dict(
27
+ type='Flip',
28
+ flip_ratio=0.5,
29
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
30
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
31
+ dict(type='Kinetics_Transform'),
32
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
33
+ dict(type='FormatGCNInput', num_person=2),
34
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
35
+ dict(type='ToTensor', keys=['keypoint'])
36
+ ]
37
+ val_pipeline = [
38
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
39
+ dict(type='PoseDecode'),
40
+ dict(type='Kinetics_Transform'),
41
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
42
+ dict(type='FormatGCNInput', num_person=2),
43
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
44
+ dict(type='ToTensor', keys=['keypoint'])
45
+ ]
46
+ test_pipeline = [
47
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
48
+ dict(type='PoseDecode'),
49
+ dict(type='Kinetics_Transform'),
50
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
51
+ dict(type='FormatGCNInput', num_person=2),
52
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
53
+ dict(type='ToTensor', keys=['keypoint'])
54
+ ]
55
+ data = dict(
56
+ videos_per_gpu=16,
57
+ workers_per_gpu=4,
58
+ test_dataloader=dict(videos_per_gpu=1),
59
+ train=dict(
60
+ type='PoseDataset',
61
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
62
+ pipeline=[
63
+ dict(type='UniformSampleFrames', clip_len=100),
64
+ dict(type='PoseDecode'),
65
+ dict(
66
+ type='Flip',
67
+ flip_ratio=0.5,
68
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
69
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
70
+ dict(type='Kinetics_Transform'),
71
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
72
+ dict(type='FormatGCNInput', num_person=2),
73
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
74
+ dict(type='ToTensor', keys=['keypoint'])
75
+ ],
76
+ split='train'),
77
+ val=dict(
78
+ type='PoseDataset',
79
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
80
+ pipeline=[
81
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
82
+ dict(type='PoseDecode'),
83
+ dict(type='Kinetics_Transform'),
84
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
85
+ dict(type='FormatGCNInput', num_person=2),
86
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
87
+ dict(type='ToTensor', keys=['keypoint'])
88
+ ],
89
+ split='val'),
90
+ test=dict(
91
+ type='PoseDataset',
92
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
93
+ pipeline=[
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ split='val'))
103
+ optimizer = dict(
104
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
105
+ optimizer_config = dict(grad_clip=None)
106
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
107
+ total_epochs = 150
108
+ checkpoint_config = dict(interval=1)
109
+ evaluation = dict(
110
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
111
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
112
+ dist_params = dict(backend='nccl')
113
+ gpu_ids = range(0, 1)
finegym/b_1/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1667686a27b2ef3a7ac7d2ce0505853620eb489ad558a9c32820b2dc465f2e78
3
+ size 5254933
finegym/b_1/best_top1_acc_epoch_138.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1754379abe875e2d57bc6466ceda3a254a57f4e88260bd42c1691b520dcc6015
3
+ size 31999601
finegym/b_2/20250624_084254.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/b_2/20250624_084254.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/b_2/b_2.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'b'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_aclnet/finegym/b_2'
4
+ model = dict(
5
+ type='RecognizerGCN',
6
+ backbone=dict(
7
+ type='GCN_Module',
8
+ gcn_ratio=0.125,
9
+ gcn_ctr='T',
10
+ gcn_ada='T',
11
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
12
+ graph_cfg=dict(
13
+ layout='coco_new',
14
+ mode='random',
15
+ num_filter=8,
16
+ init_off=0.04,
17
+ init_std=0.02)),
18
+ cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
19
+ dataset_type = 'PoseDataset'
20
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
21
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
22
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
23
+ train_pipeline = [
24
+ dict(type='UniformSampleFrames', clip_len=100),
25
+ dict(type='PoseDecode'),
26
+ dict(
27
+ type='Flip',
28
+ flip_ratio=0.5,
29
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
30
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
31
+ dict(type='Kinetics_Transform'),
32
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
33
+ dict(type='FormatGCNInput', num_person=2),
34
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
35
+ dict(type='ToTensor', keys=['keypoint'])
36
+ ]
37
+ val_pipeline = [
38
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
39
+ dict(type='PoseDecode'),
40
+ dict(type='Kinetics_Transform'),
41
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
42
+ dict(type='FormatGCNInput', num_person=2),
43
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
44
+ dict(type='ToTensor', keys=['keypoint'])
45
+ ]
46
+ test_pipeline = [
47
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
48
+ dict(type='PoseDecode'),
49
+ dict(type='Kinetics_Transform'),
50
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
51
+ dict(type='FormatGCNInput', num_person=2),
52
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
53
+ dict(type='ToTensor', keys=['keypoint'])
54
+ ]
55
+ data = dict(
56
+ videos_per_gpu=16,
57
+ workers_per_gpu=4,
58
+ test_dataloader=dict(videos_per_gpu=1),
59
+ train=dict(
60
+ type='PoseDataset',
61
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
62
+ pipeline=[
63
+ dict(type='UniformSampleFrames', clip_len=100),
64
+ dict(type='PoseDecode'),
65
+ dict(
66
+ type='Flip',
67
+ flip_ratio=0.5,
68
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
69
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
70
+ dict(type='Kinetics_Transform'),
71
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
72
+ dict(type='FormatGCNInput', num_person=2),
73
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
74
+ dict(type='ToTensor', keys=['keypoint'])
75
+ ],
76
+ split='train'),
77
+ val=dict(
78
+ type='PoseDataset',
79
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
80
+ pipeline=[
81
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
82
+ dict(type='PoseDecode'),
83
+ dict(type='Kinetics_Transform'),
84
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
85
+ dict(type='FormatGCNInput', num_person=2),
86
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
87
+ dict(type='ToTensor', keys=['keypoint'])
88
+ ],
89
+ split='val'),
90
+ test=dict(
91
+ type='PoseDataset',
92
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
93
+ pipeline=[
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ split='val'))
103
+ optimizer = dict(
104
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
105
+ optimizer_config = dict(grad_clip=None)
106
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
107
+ total_epochs = 150
108
+ checkpoint_config = dict(interval=1)
109
+ evaluation = dict(
110
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
111
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
112
+ dist_params = dict(backend='nccl')
113
+ gpu_ids = range(0, 1)
finegym/b_2/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd4b2d4a6b43b9e9c1cbe5d5db7b44799f971661080320e7c22858002bc99093
3
+ size 5254226
finegym/b_2/best_top1_acc_epoch_139.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f51a18f1d5646ec55ef9127d25424ab95aa47280c06a7b0323ddd25a679a3ff
3
+ size 31999601
finegym/b_3/20250624_084158.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/b_3/20250624_084158.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/b_3/b_3.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'b'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_aclnet/finegym/b_3'
4
+ model = dict(
5
+ type='RecognizerGCN',
6
+ backbone=dict(
7
+ type='GCN_Module',
8
+ gcn_ratio=0.125,
9
+ gcn_ctr='T',
10
+ gcn_ada='T',
11
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
12
+ graph_cfg=dict(
13
+ layout='coco_new',
14
+ mode='random',
15
+ num_filter=8,
16
+ init_off=0.04,
17
+ init_std=0.02)),
18
+ cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
19
+ dataset_type = 'PoseDataset'
20
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
21
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
22
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
23
+ train_pipeline = [
24
+ dict(type='UniformSampleFrames', clip_len=100),
25
+ dict(type='PoseDecode'),
26
+ dict(
27
+ type='Flip',
28
+ flip_ratio=0.5,
29
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
30
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
31
+ dict(type='Kinetics_Transform'),
32
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
33
+ dict(type='FormatGCNInput', num_person=2),
34
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
35
+ dict(type='ToTensor', keys=['keypoint'])
36
+ ]
37
+ val_pipeline = [
38
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
39
+ dict(type='PoseDecode'),
40
+ dict(type='Kinetics_Transform'),
41
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
42
+ dict(type='FormatGCNInput', num_person=2),
43
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
44
+ dict(type='ToTensor', keys=['keypoint'])
45
+ ]
46
+ test_pipeline = [
47
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
48
+ dict(type='PoseDecode'),
49
+ dict(type='Kinetics_Transform'),
50
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
51
+ dict(type='FormatGCNInput', num_person=2),
52
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
53
+ dict(type='ToTensor', keys=['keypoint'])
54
+ ]
55
+ data = dict(
56
+ videos_per_gpu=16,
57
+ workers_per_gpu=4,
58
+ test_dataloader=dict(videos_per_gpu=1),
59
+ train=dict(
60
+ type='PoseDataset',
61
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
62
+ pipeline=[
63
+ dict(type='UniformSampleFrames', clip_len=100),
64
+ dict(type='PoseDecode'),
65
+ dict(
66
+ type='Flip',
67
+ flip_ratio=0.5,
68
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
69
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
70
+ dict(type='Kinetics_Transform'),
71
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
72
+ dict(type='FormatGCNInput', num_person=2),
73
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
74
+ dict(type='ToTensor', keys=['keypoint'])
75
+ ],
76
+ split='train'),
77
+ val=dict(
78
+ type='PoseDataset',
79
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
80
+ pipeline=[
81
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
82
+ dict(type='PoseDecode'),
83
+ dict(type='Kinetics_Transform'),
84
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
85
+ dict(type='FormatGCNInput', num_person=2),
86
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
87
+ dict(type='ToTensor', keys=['keypoint'])
88
+ ],
89
+ split='val'),
90
+ test=dict(
91
+ type='PoseDataset',
92
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
93
+ pipeline=[
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ split='val'))
103
+ optimizer = dict(
104
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
105
+ optimizer_config = dict(grad_clip=None)
106
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
107
+ total_epochs = 150
108
+ checkpoint_config = dict(interval=1)
109
+ evaluation = dict(
110
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
111
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
112
+ dist_params = dict(backend='nccl')
113
+ gpu_ids = range(0, 1)
finegym/b_3/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbca7f85d66fa3978c79158c363760b4c13af9d2e0d01a5d21fa87704bfdd38b
3
+ size 5253922
finegym/b_3/best_top1_acc_epoch_148.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce2ea406d71cf80ebf90b44e6b69876854ddefc870b0ee56bdc128eaff1303fc
3
+ size 31999601
finegym/bm/20250624_101409.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/bm/20250624_101409.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/bm/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1d334b3d197936a0bdf6324091c167c42a4ef18795428df4b50b17b258ce90e
3
+ size 5257893
finegym/bm/best_top1_acc_epoch_148.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85f8fa42d235cb630ac931492b8a6a08835fea0cd97221f3df638526806f91e3
3
+ size 31999601
finegym/bm/bm.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'bm'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_aclnet/finegym/bm'
4
+ model = dict(
5
+ type='RecognizerGCN',
6
+ backbone=dict(
7
+ type='GCN_Module',
8
+ gcn_ratio=0.125,
9
+ gcn_ctr='T',
10
+ gcn_ada='T',
11
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
12
+ graph_cfg=dict(
13
+ layout='coco_new',
14
+ mode='random',
15
+ num_filter=8,
16
+ init_off=0.04,
17
+ init_std=0.02)),
18
+ cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
19
+ dataset_type = 'PoseDataset'
20
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
21
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
22
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
23
+ train_pipeline = [
24
+ dict(type='UniformSampleFrames', clip_len=100),
25
+ dict(type='PoseDecode'),
26
+ dict(
27
+ type='Flip',
28
+ flip_ratio=0.5,
29
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
30
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
31
+ dict(type='Kinetics_Transform'),
32
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['bm']),
33
+ dict(type='FormatGCNInput', num_person=2),
34
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
35
+ dict(type='ToTensor', keys=['keypoint'])
36
+ ]
37
+ val_pipeline = [
38
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
39
+ dict(type='PoseDecode'),
40
+ dict(type='Kinetics_Transform'),
41
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['bm']),
42
+ dict(type='FormatGCNInput', num_person=2),
43
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
44
+ dict(type='ToTensor', keys=['keypoint'])
45
+ ]
46
+ test_pipeline = [
47
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
48
+ dict(type='PoseDecode'),
49
+ dict(type='Kinetics_Transform'),
50
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['bm']),
51
+ dict(type='FormatGCNInput', num_person=2),
52
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
53
+ dict(type='ToTensor', keys=['keypoint'])
54
+ ]
55
+ data = dict(
56
+ videos_per_gpu=16,
57
+ workers_per_gpu=4,
58
+ test_dataloader=dict(videos_per_gpu=1),
59
+ train=dict(
60
+ type='PoseDataset',
61
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
62
+ pipeline=[
63
+ dict(type='UniformSampleFrames', clip_len=100),
64
+ dict(type='PoseDecode'),
65
+ dict(
66
+ type='Flip',
67
+ flip_ratio=0.5,
68
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
69
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
70
+ dict(type='Kinetics_Transform'),
71
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['bm']),
72
+ dict(type='FormatGCNInput', num_person=2),
73
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
74
+ dict(type='ToTensor', keys=['keypoint'])
75
+ ],
76
+ split='train'),
77
+ val=dict(
78
+ type='PoseDataset',
79
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
80
+ pipeline=[
81
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
82
+ dict(type='PoseDecode'),
83
+ dict(type='Kinetics_Transform'),
84
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['bm']),
85
+ dict(type='FormatGCNInput', num_person=2),
86
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
87
+ dict(type='ToTensor', keys=['keypoint'])
88
+ ],
89
+ split='val'),
90
+ test=dict(
91
+ type='PoseDataset',
92
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
93
+ pipeline=[
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['bm']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ split='val'))
103
+ optimizer = dict(
104
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
105
+ optimizer_config = dict(grad_clip=None)
106
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
107
+ total_epochs = 150
108
+ checkpoint_config = dict(interval=1)
109
+ evaluation = dict(
110
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
111
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
112
+ dist_params = dict(backend='nccl')
113
+ gpu_ids = range(0, 1)
finegym/finegym_ensemble.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from mmcv import load
2
+ import sys
3
+ # Note: please adjust the relative path according to the actual situation.
4
+ sys.path.append('../..')
5
+ from aclnet.smp import *
6
+
7
+
8
+ j_1 = load('j_1/best_pred.pkl')
9
+ b_1 = load('b_1/best_pred.pkl')
10
+ k_1 = load('k_1/best_pred.pkl')
11
+ jm = load('jm/best_pred.pkl')
12
+ bm = load('bm/best_pred.pkl')
13
+ km = load('km/best_pred.pkl')
14
+ j_2 = load('j_2/best_pred.pkl')
15
+ b_2 = load('b_2/best_pred.pkl')
16
+ k_2 = load('k_2/best_pred.pkl')
17
+ j_3 = load('j_3/best_pred.pkl')
18
+ b_3 = load('b_3/best_pred.pkl')
19
+ k_3 = load('k_3/best_pred.pkl')
20
+ label = load_label('/data/finegym/gym_hrnet.pkl', 'val')
21
+
22
+
23
+ """
24
+ ***************
25
+ InfoGCN v0:
26
+ j jm b bm k km
27
+ 2S: 95.48
28
+ 4S: 95.80
29
+ 6S: 96.01
30
+ ***************
31
+ """
32
+ print('InfoGCN v0:')
33
+ print('j jm b bm k km')
34
+ print('2S')
35
+ fused = comb([j_1, b_1], [1, 1])
36
+ print('Top-1', top1(fused, label))
37
+
38
+ print('4S')
39
+ fused = comb([j_1, b_1, jm, bm], [9, 9, 5, 5])
40
+ print('Top-1', top1(fused, label))
41
+
42
+ print('6S')
43
+ fused = comb([j_1, b_1, k_1, jm, bm, km], [9, 9, 9, 5, 5, 5])
44
+ print('Top-1', top1(fused, label))
45
+
46
+
47
+ """
48
+ ***************
49
+ HD-GCN v1:
50
+ j b j b j b
51
+ 2S: 95.48
52
+ 4S: 95.79
53
+ 6S: 95.93
54
+ ***************
55
+ """
56
+ print('HD-GCN v1:')
57
+ print('j b j b j b')
58
+ print('2S')
59
+ fused = comb([j_1, b_1], [1, 1])
60
+ print('Top-1', top1(fused, label))
61
+
62
+ print('4S')
63
+ fused = comb([j_1, b_1, j_2, b_2], [4, 4, 3, 3])
64
+ print('Top-1', top1(fused, label))
65
+
66
+ print('6S')
67
+ fused = comb([j_1, b_1, j_2, b_2, j_3, b_3], [4, 4, 3, 3, 8, 8])
68
+ print('Top-1', top1(fused, label))
finegym/j_1/20250624_084414.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/j_1/20250624_084414.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/j_1/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb1cca8720d20096212d90cab32335f99ac86240e99869f7c685395e485ccdc5
3
+ size 5256570
finegym/j_1/best_top1_acc_epoch_150.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a991fcc19307ac0de3c0b7784ad8260dfaa7db5843114bc0673db17aad5b6e5b
3
+ size 16118201
finegym/j_1/j_1.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'j'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_aclnet/finegym/j_1'
4
+ model = dict(
5
+ type='RecognizerGCN',
6
+ backbone=dict(
7
+ type='GCN_Module',
8
+ gcn_ratio=0.125,
9
+ gcn_ctr='T',
10
+ gcn_ada='T',
11
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
12
+ graph_cfg=dict(
13
+ layout='coco_new',
14
+ mode='random',
15
+ num_filter=8,
16
+ init_off=0.04,
17
+ init_std=0.02)),
18
+ cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
19
+ dataset_type = 'PoseDataset'
20
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
21
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
22
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
23
+ train_pipeline = [
24
+ dict(type='UniformSampleFrames', clip_len=100),
25
+ dict(type='PoseDecode'),
26
+ dict(
27
+ type='Flip',
28
+ flip_ratio=0.5,
29
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
30
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
31
+ dict(type='Kinetics_Transform'),
32
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
33
+ dict(type='FormatGCNInput', num_person=2),
34
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
35
+ dict(type='ToTensor', keys=['keypoint'])
36
+ ]
37
+ val_pipeline = [
38
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
39
+ dict(type='PoseDecode'),
40
+ dict(type='Kinetics_Transform'),
41
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
42
+ dict(type='FormatGCNInput', num_person=2),
43
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
44
+ dict(type='ToTensor', keys=['keypoint'])
45
+ ]
46
+ test_pipeline = [
47
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
48
+ dict(type='PoseDecode'),
49
+ dict(type='Kinetics_Transform'),
50
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
51
+ dict(type='FormatGCNInput', num_person=2),
52
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
53
+ dict(type='ToTensor', keys=['keypoint'])
54
+ ]
55
+ data = dict(
56
+ videos_per_gpu=16,
57
+ workers_per_gpu=4,
58
+ test_dataloader=dict(videos_per_gpu=1),
59
+ train=dict(
60
+ type='PoseDataset',
61
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
62
+ pipeline=[
63
+ dict(type='UniformSampleFrames', clip_len=100),
64
+ dict(type='PoseDecode'),
65
+ dict(
66
+ type='Flip',
67
+ flip_ratio=0.5,
68
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
69
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
70
+ dict(type='Kinetics_Transform'),
71
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
72
+ dict(type='FormatGCNInput', num_person=2),
73
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
74
+ dict(type='ToTensor', keys=['keypoint'])
75
+ ],
76
+ split='train'),
77
+ val=dict(
78
+ type='PoseDataset',
79
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
80
+ pipeline=[
81
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
82
+ dict(type='PoseDecode'),
83
+ dict(type='Kinetics_Transform'),
84
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
85
+ dict(type='FormatGCNInput', num_person=2),
86
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
87
+ dict(type='ToTensor', keys=['keypoint'])
88
+ ],
89
+ split='val'),
90
+ test=dict(
91
+ type='PoseDataset',
92
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
93
+ pipeline=[
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ split='val'))
103
+ optimizer = dict(
104
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
105
+ optimizer_config = dict(grad_clip=None)
106
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
107
+ total_epochs = 150
108
+ checkpoint_config = dict(interval=1)
109
+ evaluation = dict(
110
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
111
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
112
+ dist_params = dict(backend='nccl')
113
+ gpu_ids = range(0, 1)
finegym/j_2/20250624_084315.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/j_2/20250624_084315.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/j_2/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd20197d42a554c12bc0af8293b23f4a96c30bf6ca028d911b11074c11352432
3
+ size 5257662
finegym/j_2/best_top1_acc_epoch_150.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bad9ebbd0bcf82a0c88cbab4ab8c28418e150df63fa0be4db2d67e03725efe35
3
+ size 31999601
finegym/j_2/j_2.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'j'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_aclnet/finegym/j_2'
4
+ model = dict(
5
+ type='RecognizerGCN',
6
+ backbone=dict(
7
+ type='GCN_Module',
8
+ gcn_ratio=0.125,
9
+ gcn_ctr='T',
10
+ gcn_ada='T',
11
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
12
+ graph_cfg=dict(
13
+ layout='coco_new',
14
+ mode='random',
15
+ num_filter=8,
16
+ init_off=0.04,
17
+ init_std=0.02)),
18
+ cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
19
+ dataset_type = 'PoseDataset'
20
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
21
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
22
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
23
+ train_pipeline = [
24
+ dict(type='UniformSampleFrames', clip_len=100),
25
+ dict(type='PoseDecode'),
26
+ dict(
27
+ type='Flip',
28
+ flip_ratio=0.5,
29
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
30
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
31
+ dict(type='Kinetics_Transform'),
32
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
33
+ dict(type='FormatGCNInput', num_person=2),
34
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
35
+ dict(type='ToTensor', keys=['keypoint'])
36
+ ]
37
+ val_pipeline = [
38
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
39
+ dict(type='PoseDecode'),
40
+ dict(type='Kinetics_Transform'),
41
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
42
+ dict(type='FormatGCNInput', num_person=2),
43
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
44
+ dict(type='ToTensor', keys=['keypoint'])
45
+ ]
46
+ test_pipeline = [
47
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
48
+ dict(type='PoseDecode'),
49
+ dict(type='Kinetics_Transform'),
50
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
51
+ dict(type='FormatGCNInput', num_person=2),
52
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
53
+ dict(type='ToTensor', keys=['keypoint'])
54
+ ]
55
+ data = dict(
56
+ videos_per_gpu=16,
57
+ workers_per_gpu=4,
58
+ test_dataloader=dict(videos_per_gpu=1),
59
+ train=dict(
60
+ type='PoseDataset',
61
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
62
+ pipeline=[
63
+ dict(type='UniformSampleFrames', clip_len=100),
64
+ dict(type='PoseDecode'),
65
+ dict(
66
+ type='Flip',
67
+ flip_ratio=0.5,
68
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
69
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
70
+ dict(type='Kinetics_Transform'),
71
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
72
+ dict(type='FormatGCNInput', num_person=2),
73
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
74
+ dict(type='ToTensor', keys=['keypoint'])
75
+ ],
76
+ split='train'),
77
+ val=dict(
78
+ type='PoseDataset',
79
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
80
+ pipeline=[
81
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
82
+ dict(type='PoseDecode'),
83
+ dict(type='Kinetics_Transform'),
84
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
85
+ dict(type='FormatGCNInput', num_person=2),
86
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
87
+ dict(type='ToTensor', keys=['keypoint'])
88
+ ],
89
+ split='val'),
90
+ test=dict(
91
+ type='PoseDataset',
92
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
93
+ pipeline=[
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ split='val'))
103
+ optimizer = dict(
104
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
105
+ optimizer_config = dict(grad_clip=None)
106
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
107
+ total_epochs = 150
108
+ checkpoint_config = dict(interval=1)
109
+ evaluation = dict(
110
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
111
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
112
+ dist_params = dict(backend='nccl')
113
+ gpu_ids = range(0, 1)
finegym/j_3/20250624_084345.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/j_3/20250624_084345.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/j_3/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b7f5f79a0963b9578a46e210f6d17c92b75b738349250975086528b5b7f987a
3
+ size 5255370
finegym/j_3/best_top1_acc_epoch_150.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b6490fedb1736242b388dbce225ae00b1d62fe536f276a106e4baa1472103fd
3
+ size 16118201
finegym/j_3/j_3.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'j'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_aclnet/finegym/j_3'
4
+ model = dict(
5
+ type='RecognizerGCN',
6
+ backbone=dict(
7
+ type='GCN_Module',
8
+ gcn_ratio=0.125,
9
+ gcn_ctr='T',
10
+ gcn_ada='T',
11
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
12
+ graph_cfg=dict(
13
+ layout='coco_new',
14
+ mode='random',
15
+ num_filter=8,
16
+ init_off=0.04,
17
+ init_std=0.02)),
18
+ cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
19
+ dataset_type = 'PoseDataset'
20
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
21
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
22
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
23
+ train_pipeline = [
24
+ dict(type='UniformSampleFrames', clip_len=100),
25
+ dict(type='PoseDecode'),
26
+ dict(
27
+ type='Flip',
28
+ flip_ratio=0.5,
29
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
30
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
31
+ dict(type='Kinetics_Transform'),
32
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
33
+ dict(type='FormatGCNInput', num_person=2),
34
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
35
+ dict(type='ToTensor', keys=['keypoint'])
36
+ ]
37
+ val_pipeline = [
38
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
39
+ dict(type='PoseDecode'),
40
+ dict(type='Kinetics_Transform'),
41
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
42
+ dict(type='FormatGCNInput', num_person=2),
43
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
44
+ dict(type='ToTensor', keys=['keypoint'])
45
+ ]
46
+ test_pipeline = [
47
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
48
+ dict(type='PoseDecode'),
49
+ dict(type='Kinetics_Transform'),
50
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
51
+ dict(type='FormatGCNInput', num_person=2),
52
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
53
+ dict(type='ToTensor', keys=['keypoint'])
54
+ ]
55
+ data = dict(
56
+ videos_per_gpu=16,
57
+ workers_per_gpu=4,
58
+ test_dataloader=dict(videos_per_gpu=1),
59
+ train=dict(
60
+ type='PoseDataset',
61
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
62
+ pipeline=[
63
+ dict(type='UniformSampleFrames', clip_len=100),
64
+ dict(type='PoseDecode'),
65
+ dict(
66
+ type='Flip',
67
+ flip_ratio=0.5,
68
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
69
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
70
+ dict(type='Kinetics_Transform'),
71
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
72
+ dict(type='FormatGCNInput', num_person=2),
73
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
74
+ dict(type='ToTensor', keys=['keypoint'])
75
+ ],
76
+ split='train'),
77
+ val=dict(
78
+ type='PoseDataset',
79
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
80
+ pipeline=[
81
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
82
+ dict(type='PoseDecode'),
83
+ dict(type='Kinetics_Transform'),
84
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
85
+ dict(type='FormatGCNInput', num_person=2),
86
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
87
+ dict(type='ToTensor', keys=['keypoint'])
88
+ ],
89
+ split='val'),
90
+ test=dict(
91
+ type='PoseDataset',
92
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
93
+ pipeline=[
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ split='val'))
103
+ optimizer = dict(
104
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
105
+ optimizer_config = dict(grad_clip=None)
106
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
107
+ total_epochs = 150
108
+ checkpoint_config = dict(interval=1)
109
+ evaluation = dict(
110
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
111
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
112
+ dist_params = dict(backend='nccl')
113
+ gpu_ids = range(0, 1)
finegym/jm/20250624_101434.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/jm/20250624_101434.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/jm/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2e4dd79eca7185518373b4ee6b273b476f724304ec175ce47a725dc6f3d92d2
3
+ size 5255302
finegym/jm/best_top1_acc_epoch_147.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:151266b00eca2713ffb4366fcc1348a209ec738956a8390e3fd416af288b2383
3
+ size 31999601
finegym/jm/jm.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'jm'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_aclnet/finegym/jm'
4
+ model = dict(
5
+ type='RecognizerGCN',
6
+ backbone=dict(
7
+ type='GCN_Module',
8
+ gcn_ratio=0.125,
9
+ gcn_ctr='T',
10
+ gcn_ada='T',
11
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
12
+ graph_cfg=dict(
13
+ layout='coco_new',
14
+ mode='random',
15
+ num_filter=8,
16
+ init_off=0.04,
17
+ init_std=0.02)),
18
+ cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
19
+ dataset_type = 'PoseDataset'
20
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
21
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
22
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
23
+ train_pipeline = [
24
+ dict(type='UniformSampleFrames', clip_len=100),
25
+ dict(type='PoseDecode'),
26
+ dict(
27
+ type='Flip',
28
+ flip_ratio=0.5,
29
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
30
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
31
+ dict(type='Kinetics_Transform'),
32
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
33
+ dict(type='FormatGCNInput', num_person=2),
34
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
35
+ dict(type='ToTensor', keys=['keypoint'])
36
+ ]
37
+ val_pipeline = [
38
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
39
+ dict(type='PoseDecode'),
40
+ dict(type='Kinetics_Transform'),
41
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
42
+ dict(type='FormatGCNInput', num_person=2),
43
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
44
+ dict(type='ToTensor', keys=['keypoint'])
45
+ ]
46
+ test_pipeline = [
47
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
48
+ dict(type='PoseDecode'),
49
+ dict(type='Kinetics_Transform'),
50
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
51
+ dict(type='FormatGCNInput', num_person=2),
52
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
53
+ dict(type='ToTensor', keys=['keypoint'])
54
+ ]
55
+ data = dict(
56
+ videos_per_gpu=16,
57
+ workers_per_gpu=4,
58
+ test_dataloader=dict(videos_per_gpu=1),
59
+ train=dict(
60
+ type='PoseDataset',
61
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
62
+ pipeline=[
63
+ dict(type='UniformSampleFrames', clip_len=100),
64
+ dict(type='PoseDecode'),
65
+ dict(
66
+ type='Flip',
67
+ flip_ratio=0.5,
68
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
69
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
70
+ dict(type='Kinetics_Transform'),
71
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
72
+ dict(type='FormatGCNInput', num_person=2),
73
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
74
+ dict(type='ToTensor', keys=['keypoint'])
75
+ ],
76
+ split='train'),
77
+ val=dict(
78
+ type='PoseDataset',
79
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
80
+ pipeline=[
81
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
82
+ dict(type='PoseDecode'),
83
+ dict(type='Kinetics_Transform'),
84
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
85
+ dict(type='FormatGCNInput', num_person=2),
86
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
87
+ dict(type='ToTensor', keys=['keypoint'])
88
+ ],
89
+ split='val'),
90
+ test=dict(
91
+ type='PoseDataset',
92
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
93
+ pipeline=[
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ split='val'))
103
+ optimizer = dict(
104
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
105
+ optimizer_config = dict(grad_clip=None)
106
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
107
+ total_epochs = 150
108
+ checkpoint_config = dict(interval=1)
109
+ evaluation = dict(
110
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
111
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
112
+ dist_params = dict(backend='nccl')
113
+ gpu_ids = range(0, 1)
finegym/k_1/20250624_101323.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/k_1/20250624_101323.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/k_1/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c06926547b6652db4986b1a7d59f41d80ae7834c149eb0689a0317f5f4e848a
3
+ size 5257632
finegym/k_1/best_top1_acc_epoch_150.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:487f7f480cc3b6c91ab42dfbef04731c5dfc3c9628e1af31eb58e87f5aca765c
3
+ size 31999601
finegym/k_1/k_1.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'k'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_aclnet/finegym/k_1'
4
+ model = dict(
5
+ type='RecognizerGCN',
6
+ backbone=dict(
7
+ type='GCN_Module',
8
+ gcn_ratio=0.125,
9
+ gcn_ctr='T',
10
+ gcn_ada='T',
11
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
12
+ graph_cfg=dict(
13
+ layout='coco_new',
14
+ mode='random',
15
+ num_filter=8,
16
+ init_off=0.04,
17
+ init_std=0.02)),
18
+ cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
19
+ dataset_type = 'PoseDataset'
20
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
21
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
22
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
23
+ train_pipeline = [
24
+ dict(type='UniformSampleFrames', clip_len=100),
25
+ dict(type='PoseDecode'),
26
+ dict(
27
+ type='Flip',
28
+ flip_ratio=0.5,
29
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
30
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
31
+ dict(type='Kinetics_Transform'),
32
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
33
+ dict(type='FormatGCNInput', num_person=2),
34
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
35
+ dict(type='ToTensor', keys=['keypoint'])
36
+ ]
37
+ val_pipeline = [
38
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
39
+ dict(type='PoseDecode'),
40
+ dict(type='Kinetics_Transform'),
41
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
42
+ dict(type='FormatGCNInput', num_person=2),
43
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
44
+ dict(type='ToTensor', keys=['keypoint'])
45
+ ]
46
+ test_pipeline = [
47
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
48
+ dict(type='PoseDecode'),
49
+ dict(type='Kinetics_Transform'),
50
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
51
+ dict(type='FormatGCNInput', num_person=2),
52
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
53
+ dict(type='ToTensor', keys=['keypoint'])
54
+ ]
55
+ data = dict(
56
+ videos_per_gpu=16,
57
+ workers_per_gpu=4,
58
+ test_dataloader=dict(videos_per_gpu=1),
59
+ train=dict(
60
+ type='PoseDataset',
61
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
62
+ pipeline=[
63
+ dict(type='UniformSampleFrames', clip_len=100),
64
+ dict(type='PoseDecode'),
65
+ dict(
66
+ type='Flip',
67
+ flip_ratio=0.5,
68
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
69
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
70
+ dict(type='Kinetics_Transform'),
71
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
72
+ dict(type='FormatGCNInput', num_person=2),
73
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
74
+ dict(type='ToTensor', keys=['keypoint'])
75
+ ],
76
+ split='train'),
77
+ val=dict(
78
+ type='PoseDataset',
79
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
80
+ pipeline=[
81
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
82
+ dict(type='PoseDecode'),
83
+ dict(type='Kinetics_Transform'),
84
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
85
+ dict(type='FormatGCNInput', num_person=2),
86
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
87
+ dict(type='ToTensor', keys=['keypoint'])
88
+ ],
89
+ split='val'),
90
+ test=dict(
91
+ type='PoseDataset',
92
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
93
+ pipeline=[
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ split='val'))
103
+ optimizer = dict(
104
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
105
+ optimizer_config = dict(grad_clip=None)
106
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
107
+ total_epochs = 150
108
+ checkpoint_config = dict(interval=1)
109
+ evaluation = dict(
110
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
111
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
112
+ dist_params = dict(backend='nccl')
113
+ gpu_ids = range(0, 1)
finegym/k_2/20250624_101213.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/k_2/20250624_101213.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/k_2/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5752510808b3d0082f81c86c622811a49bcc15d463858c6f764052114cf58ad2
3
+ size 5256300
finegym/k_2/best_top1_acc_epoch_150.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6560b85bcb87466c359d8a46b7f652c8063378ca94483039eb4bbeed21c0584
3
+ size 31999601