Upload 122 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- finegym/b_1/20250624_084232.log +0 -0
- finegym/b_1/20250624_084232.log.json +0 -0
- finegym/b_1/b_1.py +113 -0
- finegym/b_1/best_pred.pkl +3 -0
- finegym/b_1/best_top1_acc_epoch_138.pth +3 -0
- finegym/b_2/20250624_084254.log +0 -0
- finegym/b_2/20250624_084254.log.json +0 -0
- finegym/b_2/b_2.py +113 -0
- finegym/b_2/best_pred.pkl +3 -0
- finegym/b_2/best_top1_acc_epoch_139.pth +3 -0
- finegym/b_3/20250624_084158.log +0 -0
- finegym/b_3/20250624_084158.log.json +0 -0
- finegym/b_3/b_3.py +113 -0
- finegym/b_3/best_pred.pkl +3 -0
- finegym/b_3/best_top1_acc_epoch_148.pth +3 -0
- finegym/bm/20250624_101409.log +0 -0
- finegym/bm/20250624_101409.log.json +0 -0
- finegym/bm/best_pred.pkl +3 -0
- finegym/bm/best_top1_acc_epoch_148.pth +3 -0
- finegym/bm/bm.py +113 -0
- finegym/finegym_ensemble.py +68 -0
- finegym/j_1/20250624_084414.log +0 -0
- finegym/j_1/20250624_084414.log.json +0 -0
- finegym/j_1/best_pred.pkl +3 -0
- finegym/j_1/best_top1_acc_epoch_150.pth +3 -0
- finegym/j_1/j_1.py +113 -0
- finegym/j_2/20250624_084315.log +0 -0
- finegym/j_2/20250624_084315.log.json +0 -0
- finegym/j_2/best_pred.pkl +3 -0
- finegym/j_2/best_top1_acc_epoch_150.pth +3 -0
- finegym/j_2/j_2.py +113 -0
- finegym/j_3/20250624_084345.log +0 -0
- finegym/j_3/20250624_084345.log.json +0 -0
- finegym/j_3/best_pred.pkl +3 -0
- finegym/j_3/best_top1_acc_epoch_150.pth +3 -0
- finegym/j_3/j_3.py +113 -0
- finegym/jm/20250624_101434.log +0 -0
- finegym/jm/20250624_101434.log.json +0 -0
- finegym/jm/best_pred.pkl +3 -0
- finegym/jm/best_top1_acc_epoch_147.pth +3 -0
- finegym/jm/jm.py +113 -0
- finegym/k_1/20250624_101323.log +0 -0
- finegym/k_1/20250624_101323.log.json +0 -0
- finegym/k_1/best_pred.pkl +3 -0
- finegym/k_1/best_top1_acc_epoch_150.pth +3 -0
- finegym/k_1/k_1.py +113 -0
- finegym/k_2/20250624_101213.log +0 -0
- finegym/k_2/20250624_101213.log.json +0 -0
- finegym/k_2/best_pred.pkl +3 -0
- finegym/k_2/best_top1_acc_epoch_150.pth +3 -0
finegym/b_1/20250624_084232.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/b_1/20250624_084232.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/b_1/b_1.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'b'
|
| 2 |
+
graph = 'coco_new'
|
| 3 |
+
work_dir = './work_dirs/test_aclnet/finegym/b_1'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_Module',
|
| 8 |
+
gcn_ratio=0.125,
|
| 9 |
+
gcn_ctr='T',
|
| 10 |
+
gcn_ada='T',
|
| 11 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 12 |
+
graph_cfg=dict(
|
| 13 |
+
layout='coco_new',
|
| 14 |
+
mode='random',
|
| 15 |
+
num_filter=8,
|
| 16 |
+
init_off=0.04,
|
| 17 |
+
init_std=0.02)),
|
| 18 |
+
cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
|
| 19 |
+
dataset_type = 'PoseDataset'
|
| 20 |
+
ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
|
| 21 |
+
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
|
| 22 |
+
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
|
| 23 |
+
train_pipeline = [
|
| 24 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 25 |
+
dict(type='PoseDecode'),
|
| 26 |
+
dict(
|
| 27 |
+
type='Flip',
|
| 28 |
+
flip_ratio=0.5,
|
| 29 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 30 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 31 |
+
dict(type='Kinetics_Transform'),
|
| 32 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 33 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 34 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 35 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 36 |
+
]
|
| 37 |
+
val_pipeline = [
|
| 38 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 39 |
+
dict(type='PoseDecode'),
|
| 40 |
+
dict(type='Kinetics_Transform'),
|
| 41 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 42 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 43 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 44 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 45 |
+
]
|
| 46 |
+
test_pipeline = [
|
| 47 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 48 |
+
dict(type='PoseDecode'),
|
| 49 |
+
dict(type='Kinetics_Transform'),
|
| 50 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 51 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 52 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 53 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 54 |
+
]
|
| 55 |
+
data = dict(
|
| 56 |
+
videos_per_gpu=16,
|
| 57 |
+
workers_per_gpu=4,
|
| 58 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 59 |
+
train=dict(
|
| 60 |
+
type='PoseDataset',
|
| 61 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 62 |
+
pipeline=[
|
| 63 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 64 |
+
dict(type='PoseDecode'),
|
| 65 |
+
dict(
|
| 66 |
+
type='Flip',
|
| 67 |
+
flip_ratio=0.5,
|
| 68 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 69 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 70 |
+
dict(type='Kinetics_Transform'),
|
| 71 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 72 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 73 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 74 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 75 |
+
],
|
| 76 |
+
split='train'),
|
| 77 |
+
val=dict(
|
| 78 |
+
type='PoseDataset',
|
| 79 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 82 |
+
dict(type='PoseDecode'),
|
| 83 |
+
dict(type='Kinetics_Transform'),
|
| 84 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 85 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 86 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 87 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 88 |
+
],
|
| 89 |
+
split='val'),
|
| 90 |
+
test=dict(
|
| 91 |
+
type='PoseDataset',
|
| 92 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 93 |
+
pipeline=[
|
| 94 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 95 |
+
dict(type='PoseDecode'),
|
| 96 |
+
dict(type='Kinetics_Transform'),
|
| 97 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 98 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 99 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 100 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 101 |
+
],
|
| 102 |
+
split='val'))
|
| 103 |
+
optimizer = dict(
|
| 104 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 105 |
+
optimizer_config = dict(grad_clip=None)
|
| 106 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 107 |
+
total_epochs = 150
|
| 108 |
+
checkpoint_config = dict(interval=1)
|
| 109 |
+
evaluation = dict(
|
| 110 |
+
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
|
| 111 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 112 |
+
dist_params = dict(backend='nccl')
|
| 113 |
+
gpu_ids = range(0, 1)
|
finegym/b_1/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1667686a27b2ef3a7ac7d2ce0505853620eb489ad558a9c32820b2dc465f2e78
|
| 3 |
+
size 5254933
|
finegym/b_1/best_top1_acc_epoch_138.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1754379abe875e2d57bc6466ceda3a254a57f4e88260bd42c1691b520dcc6015
|
| 3 |
+
size 31999601
|
finegym/b_2/20250624_084254.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/b_2/20250624_084254.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/b_2/b_2.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'b'
|
| 2 |
+
graph = 'coco_new'
|
| 3 |
+
work_dir = './work_dirs/test_aclnet/finegym/b_2'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_Module',
|
| 8 |
+
gcn_ratio=0.125,
|
| 9 |
+
gcn_ctr='T',
|
| 10 |
+
gcn_ada='T',
|
| 11 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 12 |
+
graph_cfg=dict(
|
| 13 |
+
layout='coco_new',
|
| 14 |
+
mode='random',
|
| 15 |
+
num_filter=8,
|
| 16 |
+
init_off=0.04,
|
| 17 |
+
init_std=0.02)),
|
| 18 |
+
cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
|
| 19 |
+
dataset_type = 'PoseDataset'
|
| 20 |
+
ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
|
| 21 |
+
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
|
| 22 |
+
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
|
| 23 |
+
train_pipeline = [
|
| 24 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 25 |
+
dict(type='PoseDecode'),
|
| 26 |
+
dict(
|
| 27 |
+
type='Flip',
|
| 28 |
+
flip_ratio=0.5,
|
| 29 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 30 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 31 |
+
dict(type='Kinetics_Transform'),
|
| 32 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 33 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 34 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 35 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 36 |
+
]
|
| 37 |
+
val_pipeline = [
|
| 38 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 39 |
+
dict(type='PoseDecode'),
|
| 40 |
+
dict(type='Kinetics_Transform'),
|
| 41 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 42 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 43 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 44 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 45 |
+
]
|
| 46 |
+
test_pipeline = [
|
| 47 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 48 |
+
dict(type='PoseDecode'),
|
| 49 |
+
dict(type='Kinetics_Transform'),
|
| 50 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 51 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 52 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 53 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 54 |
+
]
|
| 55 |
+
data = dict(
|
| 56 |
+
videos_per_gpu=16,
|
| 57 |
+
workers_per_gpu=4,
|
| 58 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 59 |
+
train=dict(
|
| 60 |
+
type='PoseDataset',
|
| 61 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 62 |
+
pipeline=[
|
| 63 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 64 |
+
dict(type='PoseDecode'),
|
| 65 |
+
dict(
|
| 66 |
+
type='Flip',
|
| 67 |
+
flip_ratio=0.5,
|
| 68 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 69 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 70 |
+
dict(type='Kinetics_Transform'),
|
| 71 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 72 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 73 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 74 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 75 |
+
],
|
| 76 |
+
split='train'),
|
| 77 |
+
val=dict(
|
| 78 |
+
type='PoseDataset',
|
| 79 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 82 |
+
dict(type='PoseDecode'),
|
| 83 |
+
dict(type='Kinetics_Transform'),
|
| 84 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 85 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 86 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 87 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 88 |
+
],
|
| 89 |
+
split='val'),
|
| 90 |
+
test=dict(
|
| 91 |
+
type='PoseDataset',
|
| 92 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 93 |
+
pipeline=[
|
| 94 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 95 |
+
dict(type='PoseDecode'),
|
| 96 |
+
dict(type='Kinetics_Transform'),
|
| 97 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 98 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 99 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 100 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 101 |
+
],
|
| 102 |
+
split='val'))
|
| 103 |
+
optimizer = dict(
|
| 104 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 105 |
+
optimizer_config = dict(grad_clip=None)
|
| 106 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 107 |
+
total_epochs = 150
|
| 108 |
+
checkpoint_config = dict(interval=1)
|
| 109 |
+
evaluation = dict(
|
| 110 |
+
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
|
| 111 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 112 |
+
dist_params = dict(backend='nccl')
|
| 113 |
+
gpu_ids = range(0, 1)
|
finegym/b_2/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd4b2d4a6b43b9e9c1cbe5d5db7b44799f971661080320e7c22858002bc99093
|
| 3 |
+
size 5254226
|
finegym/b_2/best_top1_acc_epoch_139.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0f51a18f1d5646ec55ef9127d25424ab95aa47280c06a7b0323ddd25a679a3ff
|
| 3 |
+
size 31999601
|
finegym/b_3/20250624_084158.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/b_3/20250624_084158.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/b_3/b_3.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'b'
|
| 2 |
+
graph = 'coco_new'
|
| 3 |
+
work_dir = './work_dirs/test_aclnet/finegym/b_3'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_Module',
|
| 8 |
+
gcn_ratio=0.125,
|
| 9 |
+
gcn_ctr='T',
|
| 10 |
+
gcn_ada='T',
|
| 11 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 12 |
+
graph_cfg=dict(
|
| 13 |
+
layout='coco_new',
|
| 14 |
+
mode='random',
|
| 15 |
+
num_filter=8,
|
| 16 |
+
init_off=0.04,
|
| 17 |
+
init_std=0.02)),
|
| 18 |
+
cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
|
| 19 |
+
dataset_type = 'PoseDataset'
|
| 20 |
+
ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
|
| 21 |
+
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
|
| 22 |
+
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
|
| 23 |
+
train_pipeline = [
|
| 24 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 25 |
+
dict(type='PoseDecode'),
|
| 26 |
+
dict(
|
| 27 |
+
type='Flip',
|
| 28 |
+
flip_ratio=0.5,
|
| 29 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 30 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 31 |
+
dict(type='Kinetics_Transform'),
|
| 32 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 33 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 34 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 35 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 36 |
+
]
|
| 37 |
+
val_pipeline = [
|
| 38 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 39 |
+
dict(type='PoseDecode'),
|
| 40 |
+
dict(type='Kinetics_Transform'),
|
| 41 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 42 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 43 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 44 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 45 |
+
]
|
| 46 |
+
test_pipeline = [
|
| 47 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 48 |
+
dict(type='PoseDecode'),
|
| 49 |
+
dict(type='Kinetics_Transform'),
|
| 50 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 51 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 52 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 53 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 54 |
+
]
|
| 55 |
+
data = dict(
|
| 56 |
+
videos_per_gpu=16,
|
| 57 |
+
workers_per_gpu=4,
|
| 58 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 59 |
+
train=dict(
|
| 60 |
+
type='PoseDataset',
|
| 61 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 62 |
+
pipeline=[
|
| 63 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 64 |
+
dict(type='PoseDecode'),
|
| 65 |
+
dict(
|
| 66 |
+
type='Flip',
|
| 67 |
+
flip_ratio=0.5,
|
| 68 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 69 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 70 |
+
dict(type='Kinetics_Transform'),
|
| 71 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 72 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 73 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 74 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 75 |
+
],
|
| 76 |
+
split='train'),
|
| 77 |
+
val=dict(
|
| 78 |
+
type='PoseDataset',
|
| 79 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 82 |
+
dict(type='PoseDecode'),
|
| 83 |
+
dict(type='Kinetics_Transform'),
|
| 84 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 85 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 86 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 87 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 88 |
+
],
|
| 89 |
+
split='val'),
|
| 90 |
+
test=dict(
|
| 91 |
+
type='PoseDataset',
|
| 92 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 93 |
+
pipeline=[
|
| 94 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 95 |
+
dict(type='PoseDecode'),
|
| 96 |
+
dict(type='Kinetics_Transform'),
|
| 97 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
| 98 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 99 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 100 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 101 |
+
],
|
| 102 |
+
split='val'))
|
| 103 |
+
optimizer = dict(
|
| 104 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 105 |
+
optimizer_config = dict(grad_clip=None)
|
| 106 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 107 |
+
total_epochs = 150
|
| 108 |
+
checkpoint_config = dict(interval=1)
|
| 109 |
+
evaluation = dict(
|
| 110 |
+
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
|
| 111 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 112 |
+
dist_params = dict(backend='nccl')
|
| 113 |
+
gpu_ids = range(0, 1)
|
finegym/b_3/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cbca7f85d66fa3978c79158c363760b4c13af9d2e0d01a5d21fa87704bfdd38b
|
| 3 |
+
size 5253922
|
finegym/b_3/best_top1_acc_epoch_148.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ce2ea406d71cf80ebf90b44e6b69876854ddefc870b0ee56bdc128eaff1303fc
|
| 3 |
+
size 31999601
|
finegym/bm/20250624_101409.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/bm/20250624_101409.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/bm/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1d334b3d197936a0bdf6324091c167c42a4ef18795428df4b50b17b258ce90e
|
| 3 |
+
size 5257893
|
finegym/bm/best_top1_acc_epoch_148.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:85f8fa42d235cb630ac931492b8a6a08835fea0cd97221f3df638526806f91e3
|
| 3 |
+
size 31999601
|
finegym/bm/bm.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'bm'
|
| 2 |
+
graph = 'coco_new'
|
| 3 |
+
work_dir = './work_dirs/test_aclnet/finegym/bm'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_Module',
|
| 8 |
+
gcn_ratio=0.125,
|
| 9 |
+
gcn_ctr='T',
|
| 10 |
+
gcn_ada='T',
|
| 11 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 12 |
+
graph_cfg=dict(
|
| 13 |
+
layout='coco_new',
|
| 14 |
+
mode='random',
|
| 15 |
+
num_filter=8,
|
| 16 |
+
init_off=0.04,
|
| 17 |
+
init_std=0.02)),
|
| 18 |
+
cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
|
| 19 |
+
dataset_type = 'PoseDataset'
|
| 20 |
+
ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
|
| 21 |
+
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
|
| 22 |
+
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
|
| 23 |
+
train_pipeline = [
|
| 24 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 25 |
+
dict(type='PoseDecode'),
|
| 26 |
+
dict(
|
| 27 |
+
type='Flip',
|
| 28 |
+
flip_ratio=0.5,
|
| 29 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 30 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 31 |
+
dict(type='Kinetics_Transform'),
|
| 32 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['bm']),
|
| 33 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 34 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 35 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 36 |
+
]
|
| 37 |
+
val_pipeline = [
|
| 38 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 39 |
+
dict(type='PoseDecode'),
|
| 40 |
+
dict(type='Kinetics_Transform'),
|
| 41 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['bm']),
|
| 42 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 43 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 44 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 45 |
+
]
|
| 46 |
+
test_pipeline = [
|
| 47 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 48 |
+
dict(type='PoseDecode'),
|
| 49 |
+
dict(type='Kinetics_Transform'),
|
| 50 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['bm']),
|
| 51 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 52 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 53 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 54 |
+
]
|
| 55 |
+
data = dict(
|
| 56 |
+
videos_per_gpu=16,
|
| 57 |
+
workers_per_gpu=4,
|
| 58 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 59 |
+
train=dict(
|
| 60 |
+
type='PoseDataset',
|
| 61 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 62 |
+
pipeline=[
|
| 63 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 64 |
+
dict(type='PoseDecode'),
|
| 65 |
+
dict(
|
| 66 |
+
type='Flip',
|
| 67 |
+
flip_ratio=0.5,
|
| 68 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 69 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 70 |
+
dict(type='Kinetics_Transform'),
|
| 71 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['bm']),
|
| 72 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 73 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 74 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 75 |
+
],
|
| 76 |
+
split='train'),
|
| 77 |
+
val=dict(
|
| 78 |
+
type='PoseDataset',
|
| 79 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 82 |
+
dict(type='PoseDecode'),
|
| 83 |
+
dict(type='Kinetics_Transform'),
|
| 84 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['bm']),
|
| 85 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 86 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 87 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 88 |
+
],
|
| 89 |
+
split='val'),
|
| 90 |
+
test=dict(
|
| 91 |
+
type='PoseDataset',
|
| 92 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 93 |
+
pipeline=[
|
| 94 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 95 |
+
dict(type='PoseDecode'),
|
| 96 |
+
dict(type='Kinetics_Transform'),
|
| 97 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['bm']),
|
| 98 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 99 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 100 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 101 |
+
],
|
| 102 |
+
split='val'))
|
| 103 |
+
optimizer = dict(
|
| 104 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 105 |
+
optimizer_config = dict(grad_clip=None)
|
| 106 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 107 |
+
total_epochs = 150
|
| 108 |
+
checkpoint_config = dict(interval=1)
|
| 109 |
+
evaluation = dict(
|
| 110 |
+
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
|
| 111 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 112 |
+
dist_params = dict(backend='nccl')
|
| 113 |
+
gpu_ids = range(0, 1)
|
finegym/finegym_ensemble.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mmcv import load
|
| 2 |
+
import sys
|
| 3 |
+
# Note: please adjust the relative path according to the actual situation.
|
| 4 |
+
sys.path.append('../..')
|
| 5 |
+
from aclnet.smp import *
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
j_1 = load('j_1/best_pred.pkl')
|
| 9 |
+
b_1 = load('b_1/best_pred.pkl')
|
| 10 |
+
k_1 = load('k_1/best_pred.pkl')
|
| 11 |
+
jm = load('jm/best_pred.pkl')
|
| 12 |
+
bm = load('bm/best_pred.pkl')
|
| 13 |
+
km = load('km/best_pred.pkl')
|
| 14 |
+
j_2 = load('j_2/best_pred.pkl')
|
| 15 |
+
b_2 = load('b_2/best_pred.pkl')
|
| 16 |
+
k_2 = load('k_2/best_pred.pkl')
|
| 17 |
+
j_3 = load('j_3/best_pred.pkl')
|
| 18 |
+
b_3 = load('b_3/best_pred.pkl')
|
| 19 |
+
k_3 = load('k_3/best_pred.pkl')
|
| 20 |
+
label = load_label('/data/finegym/gym_hrnet.pkl', 'val')
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
"""
|
| 24 |
+
***************
|
| 25 |
+
InfoGCN v0:
|
| 26 |
+
j jm b bm k km
|
| 27 |
+
2S: 95.48
|
| 28 |
+
4S: 95.80
|
| 29 |
+
6S: 96.01
|
| 30 |
+
***************
|
| 31 |
+
"""
|
| 32 |
+
print('InfoGCN v0:')
|
| 33 |
+
print('j jm b bm k km')
|
| 34 |
+
print('2S')
|
| 35 |
+
fused = comb([j_1, b_1], [1, 1])
|
| 36 |
+
print('Top-1', top1(fused, label))
|
| 37 |
+
|
| 38 |
+
print('4S')
|
| 39 |
+
fused = comb([j_1, b_1, jm, bm], [9, 9, 5, 5])
|
| 40 |
+
print('Top-1', top1(fused, label))
|
| 41 |
+
|
| 42 |
+
print('6S')
|
| 43 |
+
fused = comb([j_1, b_1, k_1, jm, bm, km], [9, 9, 9, 5, 5, 5])
|
| 44 |
+
print('Top-1', top1(fused, label))
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
"""
|
| 48 |
+
***************
|
| 49 |
+
HD-GCN v1:
|
| 50 |
+
j b j b j b
|
| 51 |
+
2S: 95.48
|
| 52 |
+
4S: 95.79
|
| 53 |
+
6S: 95.93
|
| 54 |
+
***************
|
| 55 |
+
"""
|
| 56 |
+
print('HD-GCN v1:')
|
| 57 |
+
print('j b j b j b')
|
| 58 |
+
print('2S')
|
| 59 |
+
fused = comb([j_1, b_1], [1, 1])
|
| 60 |
+
print('Top-1', top1(fused, label))
|
| 61 |
+
|
| 62 |
+
print('4S')
|
| 63 |
+
fused = comb([j_1, b_1, j_2, b_2], [4, 4, 3, 3])
|
| 64 |
+
print('Top-1', top1(fused, label))
|
| 65 |
+
|
| 66 |
+
print('6S')
|
| 67 |
+
fused = comb([j_1, b_1, j_2, b_2, j_3, b_3], [4, 4, 3, 3, 8, 8])
|
| 68 |
+
print('Top-1', top1(fused, label))
|
finegym/j_1/20250624_084414.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/j_1/20250624_084414.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/j_1/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb1cca8720d20096212d90cab32335f99ac86240e99869f7c685395e485ccdc5
|
| 3 |
+
size 5256570
|
finegym/j_1/best_top1_acc_epoch_150.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a991fcc19307ac0de3c0b7784ad8260dfaa7db5843114bc0673db17aad5b6e5b
|
| 3 |
+
size 16118201
|
finegym/j_1/j_1.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'j'
|
| 2 |
+
graph = 'coco_new'
|
| 3 |
+
work_dir = './work_dirs/test_aclnet/finegym/j_1'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_Module',
|
| 8 |
+
gcn_ratio=0.125,
|
| 9 |
+
gcn_ctr='T',
|
| 10 |
+
gcn_ada='T',
|
| 11 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 12 |
+
graph_cfg=dict(
|
| 13 |
+
layout='coco_new',
|
| 14 |
+
mode='random',
|
| 15 |
+
num_filter=8,
|
| 16 |
+
init_off=0.04,
|
| 17 |
+
init_std=0.02)),
|
| 18 |
+
cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
|
| 19 |
+
dataset_type = 'PoseDataset'
|
| 20 |
+
ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
|
| 21 |
+
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
|
| 22 |
+
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
|
| 23 |
+
train_pipeline = [
|
| 24 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 25 |
+
dict(type='PoseDecode'),
|
| 26 |
+
dict(
|
| 27 |
+
type='Flip',
|
| 28 |
+
flip_ratio=0.5,
|
| 29 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 30 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 31 |
+
dict(type='Kinetics_Transform'),
|
| 32 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 33 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 34 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 35 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 36 |
+
]
|
| 37 |
+
val_pipeline = [
|
| 38 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 39 |
+
dict(type='PoseDecode'),
|
| 40 |
+
dict(type='Kinetics_Transform'),
|
| 41 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 42 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 43 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 44 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 45 |
+
]
|
| 46 |
+
test_pipeline = [
|
| 47 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 48 |
+
dict(type='PoseDecode'),
|
| 49 |
+
dict(type='Kinetics_Transform'),
|
| 50 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 51 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 52 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 53 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 54 |
+
]
|
| 55 |
+
data = dict(
|
| 56 |
+
videos_per_gpu=16,
|
| 57 |
+
workers_per_gpu=4,
|
| 58 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 59 |
+
train=dict(
|
| 60 |
+
type='PoseDataset',
|
| 61 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 62 |
+
pipeline=[
|
| 63 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 64 |
+
dict(type='PoseDecode'),
|
| 65 |
+
dict(
|
| 66 |
+
type='Flip',
|
| 67 |
+
flip_ratio=0.5,
|
| 68 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 69 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 70 |
+
dict(type='Kinetics_Transform'),
|
| 71 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 72 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 73 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 74 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 75 |
+
],
|
| 76 |
+
split='train'),
|
| 77 |
+
val=dict(
|
| 78 |
+
type='PoseDataset',
|
| 79 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 82 |
+
dict(type='PoseDecode'),
|
| 83 |
+
dict(type='Kinetics_Transform'),
|
| 84 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 85 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 86 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 87 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 88 |
+
],
|
| 89 |
+
split='val'),
|
| 90 |
+
test=dict(
|
| 91 |
+
type='PoseDataset',
|
| 92 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 93 |
+
pipeline=[
|
| 94 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 95 |
+
dict(type='PoseDecode'),
|
| 96 |
+
dict(type='Kinetics_Transform'),
|
| 97 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 98 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 99 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 100 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 101 |
+
],
|
| 102 |
+
split='val'))
|
| 103 |
+
optimizer = dict(
|
| 104 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 105 |
+
optimizer_config = dict(grad_clip=None)
|
| 106 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 107 |
+
total_epochs = 150
|
| 108 |
+
checkpoint_config = dict(interval=1)
|
| 109 |
+
evaluation = dict(
|
| 110 |
+
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
|
| 111 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 112 |
+
dist_params = dict(backend='nccl')
|
| 113 |
+
gpu_ids = range(0, 1)
|
finegym/j_2/20250624_084315.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/j_2/20250624_084315.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/j_2/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd20197d42a554c12bc0af8293b23f4a96c30bf6ca028d911b11074c11352432
|
| 3 |
+
size 5257662
|
finegym/j_2/best_top1_acc_epoch_150.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bad9ebbd0bcf82a0c88cbab4ab8c28418e150df63fa0be4db2d67e03725efe35
|
| 3 |
+
size 31999601
|
finegym/j_2/j_2.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'j'
|
| 2 |
+
graph = 'coco_new'
|
| 3 |
+
work_dir = './work_dirs/test_aclnet/finegym/j_2'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_Module',
|
| 8 |
+
gcn_ratio=0.125,
|
| 9 |
+
gcn_ctr='T',
|
| 10 |
+
gcn_ada='T',
|
| 11 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 12 |
+
graph_cfg=dict(
|
| 13 |
+
layout='coco_new',
|
| 14 |
+
mode='random',
|
| 15 |
+
num_filter=8,
|
| 16 |
+
init_off=0.04,
|
| 17 |
+
init_std=0.02)),
|
| 18 |
+
cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
|
| 19 |
+
dataset_type = 'PoseDataset'
|
| 20 |
+
ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
|
| 21 |
+
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
|
| 22 |
+
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
|
| 23 |
+
train_pipeline = [
|
| 24 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 25 |
+
dict(type='PoseDecode'),
|
| 26 |
+
dict(
|
| 27 |
+
type='Flip',
|
| 28 |
+
flip_ratio=0.5,
|
| 29 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 30 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 31 |
+
dict(type='Kinetics_Transform'),
|
| 32 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 33 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 34 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 35 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 36 |
+
]
|
| 37 |
+
val_pipeline = [
|
| 38 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 39 |
+
dict(type='PoseDecode'),
|
| 40 |
+
dict(type='Kinetics_Transform'),
|
| 41 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 42 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 43 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 44 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 45 |
+
]
|
| 46 |
+
test_pipeline = [
|
| 47 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 48 |
+
dict(type='PoseDecode'),
|
| 49 |
+
dict(type='Kinetics_Transform'),
|
| 50 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 51 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 52 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 53 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 54 |
+
]
|
| 55 |
+
data = dict(
|
| 56 |
+
videos_per_gpu=16,
|
| 57 |
+
workers_per_gpu=4,
|
| 58 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 59 |
+
train=dict(
|
| 60 |
+
type='PoseDataset',
|
| 61 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 62 |
+
pipeline=[
|
| 63 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 64 |
+
dict(type='PoseDecode'),
|
| 65 |
+
dict(
|
| 66 |
+
type='Flip',
|
| 67 |
+
flip_ratio=0.5,
|
| 68 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 69 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 70 |
+
dict(type='Kinetics_Transform'),
|
| 71 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 72 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 73 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 74 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 75 |
+
],
|
| 76 |
+
split='train'),
|
| 77 |
+
val=dict(
|
| 78 |
+
type='PoseDataset',
|
| 79 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 82 |
+
dict(type='PoseDecode'),
|
| 83 |
+
dict(type='Kinetics_Transform'),
|
| 84 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 85 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 86 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 87 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 88 |
+
],
|
| 89 |
+
split='val'),
|
| 90 |
+
test=dict(
|
| 91 |
+
type='PoseDataset',
|
| 92 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 93 |
+
pipeline=[
|
| 94 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 95 |
+
dict(type='PoseDecode'),
|
| 96 |
+
dict(type='Kinetics_Transform'),
|
| 97 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 98 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 99 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 100 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 101 |
+
],
|
| 102 |
+
split='val'))
|
| 103 |
+
optimizer = dict(
|
| 104 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 105 |
+
optimizer_config = dict(grad_clip=None)
|
| 106 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 107 |
+
total_epochs = 150
|
| 108 |
+
checkpoint_config = dict(interval=1)
|
| 109 |
+
evaluation = dict(
|
| 110 |
+
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
|
| 111 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 112 |
+
dist_params = dict(backend='nccl')
|
| 113 |
+
gpu_ids = range(0, 1)
|
finegym/j_3/20250624_084345.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/j_3/20250624_084345.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/j_3/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b7f5f79a0963b9578a46e210f6d17c92b75b738349250975086528b5b7f987a
|
| 3 |
+
size 5255370
|
finegym/j_3/best_top1_acc_epoch_150.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4b6490fedb1736242b388dbce225ae00b1d62fe536f276a106e4baa1472103fd
|
| 3 |
+
size 16118201
|
finegym/j_3/j_3.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'j'
|
| 2 |
+
graph = 'coco_new'
|
| 3 |
+
work_dir = './work_dirs/test_aclnet/finegym/j_3'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_Module',
|
| 8 |
+
gcn_ratio=0.125,
|
| 9 |
+
gcn_ctr='T',
|
| 10 |
+
gcn_ada='T',
|
| 11 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 12 |
+
graph_cfg=dict(
|
| 13 |
+
layout='coco_new',
|
| 14 |
+
mode='random',
|
| 15 |
+
num_filter=8,
|
| 16 |
+
init_off=0.04,
|
| 17 |
+
init_std=0.02)),
|
| 18 |
+
cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
|
| 19 |
+
dataset_type = 'PoseDataset'
|
| 20 |
+
ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
|
| 21 |
+
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
|
| 22 |
+
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
|
| 23 |
+
train_pipeline = [
|
| 24 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 25 |
+
dict(type='PoseDecode'),
|
| 26 |
+
dict(
|
| 27 |
+
type='Flip',
|
| 28 |
+
flip_ratio=0.5,
|
| 29 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 30 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 31 |
+
dict(type='Kinetics_Transform'),
|
| 32 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 33 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 34 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 35 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 36 |
+
]
|
| 37 |
+
val_pipeline = [
|
| 38 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 39 |
+
dict(type='PoseDecode'),
|
| 40 |
+
dict(type='Kinetics_Transform'),
|
| 41 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 42 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 43 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 44 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 45 |
+
]
|
| 46 |
+
test_pipeline = [
|
| 47 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 48 |
+
dict(type='PoseDecode'),
|
| 49 |
+
dict(type='Kinetics_Transform'),
|
| 50 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 51 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 52 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 53 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 54 |
+
]
|
| 55 |
+
data = dict(
|
| 56 |
+
videos_per_gpu=16,
|
| 57 |
+
workers_per_gpu=4,
|
| 58 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 59 |
+
train=dict(
|
| 60 |
+
type='PoseDataset',
|
| 61 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 62 |
+
pipeline=[
|
| 63 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 64 |
+
dict(type='PoseDecode'),
|
| 65 |
+
dict(
|
| 66 |
+
type='Flip',
|
| 67 |
+
flip_ratio=0.5,
|
| 68 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 69 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 70 |
+
dict(type='Kinetics_Transform'),
|
| 71 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 72 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 73 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 74 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 75 |
+
],
|
| 76 |
+
split='train'),
|
| 77 |
+
val=dict(
|
| 78 |
+
type='PoseDataset',
|
| 79 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 82 |
+
dict(type='PoseDecode'),
|
| 83 |
+
dict(type='Kinetics_Transform'),
|
| 84 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 85 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 86 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 87 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 88 |
+
],
|
| 89 |
+
split='val'),
|
| 90 |
+
test=dict(
|
| 91 |
+
type='PoseDataset',
|
| 92 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 93 |
+
pipeline=[
|
| 94 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 95 |
+
dict(type='PoseDecode'),
|
| 96 |
+
dict(type='Kinetics_Transform'),
|
| 97 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
|
| 98 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 99 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 100 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 101 |
+
],
|
| 102 |
+
split='val'))
|
| 103 |
+
optimizer = dict(
|
| 104 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 105 |
+
optimizer_config = dict(grad_clip=None)
|
| 106 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 107 |
+
total_epochs = 150
|
| 108 |
+
checkpoint_config = dict(interval=1)
|
| 109 |
+
evaluation = dict(
|
| 110 |
+
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
|
| 111 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 112 |
+
dist_params = dict(backend='nccl')
|
| 113 |
+
gpu_ids = range(0, 1)
|
finegym/jm/20250624_101434.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/jm/20250624_101434.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/jm/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f2e4dd79eca7185518373b4ee6b273b476f724304ec175ce47a725dc6f3d92d2
|
| 3 |
+
size 5255302
|
finegym/jm/best_top1_acc_epoch_147.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:151266b00eca2713ffb4366fcc1348a209ec738956a8390e3fd416af288b2383
|
| 3 |
+
size 31999601
|
finegym/jm/jm.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'jm'
|
| 2 |
+
graph = 'coco_new'
|
| 3 |
+
work_dir = './work_dirs/test_aclnet/finegym/jm'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_Module',
|
| 8 |
+
gcn_ratio=0.125,
|
| 9 |
+
gcn_ctr='T',
|
| 10 |
+
gcn_ada='T',
|
| 11 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 12 |
+
graph_cfg=dict(
|
| 13 |
+
layout='coco_new',
|
| 14 |
+
mode='random',
|
| 15 |
+
num_filter=8,
|
| 16 |
+
init_off=0.04,
|
| 17 |
+
init_std=0.02)),
|
| 18 |
+
cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
|
| 19 |
+
dataset_type = 'PoseDataset'
|
| 20 |
+
ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
|
| 21 |
+
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
|
| 22 |
+
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
|
| 23 |
+
train_pipeline = [
|
| 24 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 25 |
+
dict(type='PoseDecode'),
|
| 26 |
+
dict(
|
| 27 |
+
type='Flip',
|
| 28 |
+
flip_ratio=0.5,
|
| 29 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 30 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 31 |
+
dict(type='Kinetics_Transform'),
|
| 32 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
|
| 33 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 34 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 35 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 36 |
+
]
|
| 37 |
+
val_pipeline = [
|
| 38 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 39 |
+
dict(type='PoseDecode'),
|
| 40 |
+
dict(type='Kinetics_Transform'),
|
| 41 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
|
| 42 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 43 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 44 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 45 |
+
]
|
| 46 |
+
test_pipeline = [
|
| 47 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 48 |
+
dict(type='PoseDecode'),
|
| 49 |
+
dict(type='Kinetics_Transform'),
|
| 50 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
|
| 51 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 52 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 53 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 54 |
+
]
|
| 55 |
+
data = dict(
|
| 56 |
+
videos_per_gpu=16,
|
| 57 |
+
workers_per_gpu=4,
|
| 58 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 59 |
+
train=dict(
|
| 60 |
+
type='PoseDataset',
|
| 61 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 62 |
+
pipeline=[
|
| 63 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 64 |
+
dict(type='PoseDecode'),
|
| 65 |
+
dict(
|
| 66 |
+
type='Flip',
|
| 67 |
+
flip_ratio=0.5,
|
| 68 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 69 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 70 |
+
dict(type='Kinetics_Transform'),
|
| 71 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
|
| 72 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 73 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 74 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 75 |
+
],
|
| 76 |
+
split='train'),
|
| 77 |
+
val=dict(
|
| 78 |
+
type='PoseDataset',
|
| 79 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 82 |
+
dict(type='PoseDecode'),
|
| 83 |
+
dict(type='Kinetics_Transform'),
|
| 84 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
|
| 85 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 86 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 87 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 88 |
+
],
|
| 89 |
+
split='val'),
|
| 90 |
+
test=dict(
|
| 91 |
+
type='PoseDataset',
|
| 92 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 93 |
+
pipeline=[
|
| 94 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 95 |
+
dict(type='PoseDecode'),
|
| 96 |
+
dict(type='Kinetics_Transform'),
|
| 97 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
|
| 98 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 99 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 100 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 101 |
+
],
|
| 102 |
+
split='val'))
|
| 103 |
+
optimizer = dict(
|
| 104 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 105 |
+
optimizer_config = dict(grad_clip=None)
|
| 106 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 107 |
+
total_epochs = 150
|
| 108 |
+
checkpoint_config = dict(interval=1)
|
| 109 |
+
evaluation = dict(
|
| 110 |
+
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
|
| 111 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 112 |
+
dist_params = dict(backend='nccl')
|
| 113 |
+
gpu_ids = range(0, 1)
|
finegym/k_1/20250624_101323.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/k_1/20250624_101323.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/k_1/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c06926547b6652db4986b1a7d59f41d80ae7834c149eb0689a0317f5f4e848a
|
| 3 |
+
size 5257632
|
finegym/k_1/best_top1_acc_epoch_150.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:487f7f480cc3b6c91ab42dfbef04731c5dfc3c9628e1af31eb58e87f5aca765c
|
| 3 |
+
size 31999601
|
finegym/k_1/k_1.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'k'
|
| 2 |
+
graph = 'coco_new'
|
| 3 |
+
work_dir = './work_dirs/test_aclnet/finegym/k_1'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_Module',
|
| 8 |
+
gcn_ratio=0.125,
|
| 9 |
+
gcn_ctr='T',
|
| 10 |
+
gcn_ada='T',
|
| 11 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 12 |
+
graph_cfg=dict(
|
| 13 |
+
layout='coco_new',
|
| 14 |
+
mode='random',
|
| 15 |
+
num_filter=8,
|
| 16 |
+
init_off=0.04,
|
| 17 |
+
init_std=0.02)),
|
| 18 |
+
cls_head=dict(type='SimpleHead', data_cfg='finegym', num_classes=99, in_channels=384))
|
| 19 |
+
dataset_type = 'PoseDataset'
|
| 20 |
+
ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
|
| 21 |
+
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
|
| 22 |
+
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
|
| 23 |
+
train_pipeline = [
|
| 24 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 25 |
+
dict(type='PoseDecode'),
|
| 26 |
+
dict(
|
| 27 |
+
type='Flip',
|
| 28 |
+
flip_ratio=0.5,
|
| 29 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 30 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 31 |
+
dict(type='Kinetics_Transform'),
|
| 32 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
|
| 33 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 34 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 35 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 36 |
+
]
|
| 37 |
+
val_pipeline = [
|
| 38 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 39 |
+
dict(type='PoseDecode'),
|
| 40 |
+
dict(type='Kinetics_Transform'),
|
| 41 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
|
| 42 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 43 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 44 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 45 |
+
]
|
| 46 |
+
test_pipeline = [
|
| 47 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 48 |
+
dict(type='PoseDecode'),
|
| 49 |
+
dict(type='Kinetics_Transform'),
|
| 50 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
|
| 51 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 52 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 53 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 54 |
+
]
|
| 55 |
+
data = dict(
|
| 56 |
+
videos_per_gpu=16,
|
| 57 |
+
workers_per_gpu=4,
|
| 58 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 59 |
+
train=dict(
|
| 60 |
+
type='PoseDataset',
|
| 61 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 62 |
+
pipeline=[
|
| 63 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
| 64 |
+
dict(type='PoseDecode'),
|
| 65 |
+
dict(
|
| 66 |
+
type='Flip',
|
| 67 |
+
flip_ratio=0.5,
|
| 68 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
| 69 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
| 70 |
+
dict(type='Kinetics_Transform'),
|
| 71 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
|
| 72 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 73 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 74 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 75 |
+
],
|
| 76 |
+
split='train'),
|
| 77 |
+
val=dict(
|
| 78 |
+
type='PoseDataset',
|
| 79 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
| 82 |
+
dict(type='PoseDecode'),
|
| 83 |
+
dict(type='Kinetics_Transform'),
|
| 84 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
|
| 85 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 86 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 87 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 88 |
+
],
|
| 89 |
+
split='val'),
|
| 90 |
+
test=dict(
|
| 91 |
+
type='PoseDataset',
|
| 92 |
+
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
|
| 93 |
+
pipeline=[
|
| 94 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
| 95 |
+
dict(type='PoseDecode'),
|
| 96 |
+
dict(type='Kinetics_Transform'),
|
| 97 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
|
| 98 |
+
dict(type='FormatGCNInput', num_person=2),
|
| 99 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 100 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 101 |
+
],
|
| 102 |
+
split='val'))
|
| 103 |
+
optimizer = dict(
|
| 104 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 105 |
+
optimizer_config = dict(grad_clip=None)
|
| 106 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 107 |
+
total_epochs = 150
|
| 108 |
+
checkpoint_config = dict(interval=1)
|
| 109 |
+
evaluation = dict(
|
| 110 |
+
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
|
| 111 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 112 |
+
dist_params = dict(backend='nccl')
|
| 113 |
+
gpu_ids = range(0, 1)
|
finegym/k_2/20250624_101213.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/k_2/20250624_101213.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finegym/k_2/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5752510808b3d0082f81c86c622811a49bcc15d463858c6f764052114cf58ad2
|
| 3 |
+
size 5256300
|
finegym/k_2/best_top1_acc_epoch_150.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d6560b85bcb87466c359d8a46b7f652c8063378ca94483039eb4bbeed21c0584
|
| 3 |
+
size 31999601
|