trl-demo-scripts / train_medium.py
evalstate's picture
evalstate HF Staff
Upload train_medium.py with huggingface_hub
b6a400a verified
#!/usr/bin/env python3
# /// script
# dependencies = [
# "trl>=0.12.0",
# "peft>=0.7.0",
# "transformers>=4.36.0",
# "accelerate>=0.24.0",
# "trackio",
# ]
# ///
from datasets import load_dataset
from peft import LoraConfig
from trl import SFTTrainer, SFTConfig
import trackio
import os
print("πŸš€ Medium-Scale SFT Training with Trackio")
print("=" * 60)
# Initialize Trackio with Space sync
print("\nπŸ“Š Initializing Trackio...")
trackio.init(
project="medium-sft-training",
space_id="evalstate/trl-trackio-dashboard",
config={
"model": "Qwen/Qwen2.5-0.5B",
"dataset": "trl-lib/Capybara",
"dataset_size": 1000,
"num_epochs": 3,
"learning_rate": 2e-5,
"batch_size": 4,
"gradient_accumulation": 4,
"lora_r": 16,
"lora_alpha": 32,
"hardware": "a10g-large",
}
)
print("βœ… Trackio initialized!")
print("πŸ“ˆ Dashboard: https://huggingface.co/spaces/evalstate/trl-trackio-dashboard")
# Load dataset - 1000 examples
print("\nπŸ“Š Loading dataset...")
dataset = load_dataset("trl-lib/Capybara", split="train[:1000]")
print(f"βœ… Dataset loaded: {len(dataset)} examples")
# Get username
username = os.environ.get("HF_USERNAME", "evalstate")
# Training configuration - production settings
print("\nβš™οΈ Configuring training...")
config = SFTConfig(
# Output and Hub settings
output_dir="qwen-capybara-medium",
push_to_hub=True,
hub_model_id=f"{username}/qwen-capybara-medium",
hub_strategy="every_save", # Push all checkpoints
# Training parameters - 3 epochs on 1K examples
num_train_epochs=3,
per_device_train_batch_size=4,
gradient_accumulation_steps=4, # Effective batch size = 16
# Learning rate and schedule
learning_rate=2e-5,
warmup_ratio=0.1,
lr_scheduler_type="cosine",
# Logging and checkpointing
logging_steps=10, # Log every 10 steps
save_strategy="steps",
save_steps=50, # Save every 50 steps
save_total_limit=3, # Keep only 3 latest checkpoints
# Evaluation
eval_strategy="steps",
eval_steps=50,
# Optimization
bf16=True, # Use bfloat16 for A10G
gradient_checkpointing=True, # Save memory
# Trackio monitoring
report_to="trackio",
)
# LoRA configuration - larger than demo
print("πŸ”§ Setting up LoRA (r=16)...")
peft_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"], # More modules
)
# Create eval split
print("\nπŸ”€ Creating train/eval split...")
dataset_split = dataset.train_test_split(test_size=0.1, seed=42)
train_dataset = dataset_split["train"]
eval_dataset = dataset_split["test"]
print(f" Train: {len(train_dataset)} examples")
print(f" Eval: {len(eval_dataset)} examples")
# Initialize trainer
print("\n🎯 Initializing trainer...")
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=train_dataset,
eval_dataset=eval_dataset,
args=config,
peft_config=peft_config,
)
# Calculate training info
total_steps = (len(train_dataset) // (4 * 4)) * 3 # samples / (batch * grad_accum) * epochs
print(f"\nπŸ“Š Training Info:")
print(f" Total steps: ~{total_steps}")
print(f" Epochs: 3")
print(f" Effective batch size: 16")
print(f" Expected time: ~45-60 minutes")
print(f" Checkpoints saved every 50 steps")
# Train!
print("\nπŸƒ Starting training...")
print("πŸ“ˆ Watch live metrics: https://huggingface.co/spaces/evalstate/trl-trackio-dashboard")
print("-" * 60)
trainer.train()
# Save to Hub
print("\nπŸ’Ύ Pushing final model to Hub...")
trainer.push_to_hub()
# Finish Trackio
print("\nπŸ“Š Finalizing Trackio metrics...")
trackio.finish()
print("\n" + "=" * 60)
print("βœ… Training complete!")
print(f"πŸ“¦ Model: https://huggingface.co/{username}/qwen-capybara-medium")
print(f"πŸ“Š Metrics: https://huggingface.co/spaces/evalstate/trl-trackio-dashboard")
print(f"πŸ’‘ Try the model with:")
print(f' from transformers import pipeline')
print(f' generator = pipeline("text-generation", model="{username}/qwen-capybara-medium")')
print("=" * 60)