|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from datasets import load_dataset |
|
|
from peft import LoraConfig |
|
|
from trl import SFTTrainer, SFTConfig |
|
|
import trackio |
|
|
import os |
|
|
|
|
|
print("π Medium-Scale SFT Training with Trackio") |
|
|
print("=" * 60) |
|
|
|
|
|
|
|
|
print("\nπ Initializing Trackio...") |
|
|
trackio.init( |
|
|
project="medium-sft-training", |
|
|
space_id="evalstate/trl-trackio-dashboard", |
|
|
config={ |
|
|
"model": "Qwen/Qwen2.5-0.5B", |
|
|
"dataset": "trl-lib/Capybara", |
|
|
"dataset_size": 1000, |
|
|
"num_epochs": 3, |
|
|
"learning_rate": 2e-5, |
|
|
"batch_size": 4, |
|
|
"gradient_accumulation": 4, |
|
|
"lora_r": 16, |
|
|
"lora_alpha": 32, |
|
|
"hardware": "a10g-large", |
|
|
} |
|
|
) |
|
|
print("β
Trackio initialized!") |
|
|
print("π Dashboard: https://huggingface.co/spaces/evalstate/trl-trackio-dashboard") |
|
|
|
|
|
|
|
|
print("\nπ Loading dataset...") |
|
|
dataset = load_dataset("trl-lib/Capybara", split="train[:1000]") |
|
|
print(f"β
Dataset loaded: {len(dataset)} examples") |
|
|
|
|
|
|
|
|
username = os.environ.get("HF_USERNAME", "evalstate") |
|
|
|
|
|
|
|
|
print("\nβοΈ Configuring training...") |
|
|
config = SFTConfig( |
|
|
|
|
|
output_dir="qwen-capybara-medium", |
|
|
push_to_hub=True, |
|
|
hub_model_id=f"{username}/qwen-capybara-medium", |
|
|
hub_strategy="every_save", |
|
|
|
|
|
|
|
|
num_train_epochs=3, |
|
|
per_device_train_batch_size=4, |
|
|
gradient_accumulation_steps=4, |
|
|
|
|
|
|
|
|
learning_rate=2e-5, |
|
|
warmup_ratio=0.1, |
|
|
lr_scheduler_type="cosine", |
|
|
|
|
|
|
|
|
logging_steps=10, |
|
|
save_strategy="steps", |
|
|
save_steps=50, |
|
|
save_total_limit=3, |
|
|
|
|
|
|
|
|
eval_strategy="steps", |
|
|
eval_steps=50, |
|
|
|
|
|
|
|
|
bf16=True, |
|
|
gradient_checkpointing=True, |
|
|
|
|
|
|
|
|
report_to="trackio", |
|
|
) |
|
|
|
|
|
|
|
|
print("π§ Setting up LoRA (r=16)...") |
|
|
peft_config = LoraConfig( |
|
|
r=16, |
|
|
lora_alpha=32, |
|
|
lora_dropout=0.05, |
|
|
bias="none", |
|
|
task_type="CAUSAL_LM", |
|
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"], |
|
|
) |
|
|
|
|
|
|
|
|
print("\nπ Creating train/eval split...") |
|
|
dataset_split = dataset.train_test_split(test_size=0.1, seed=42) |
|
|
train_dataset = dataset_split["train"] |
|
|
eval_dataset = dataset_split["test"] |
|
|
print(f" Train: {len(train_dataset)} examples") |
|
|
print(f" Eval: {len(eval_dataset)} examples") |
|
|
|
|
|
|
|
|
print("\nπ― Initializing trainer...") |
|
|
trainer = SFTTrainer( |
|
|
model="Qwen/Qwen2.5-0.5B", |
|
|
train_dataset=train_dataset, |
|
|
eval_dataset=eval_dataset, |
|
|
args=config, |
|
|
peft_config=peft_config, |
|
|
) |
|
|
|
|
|
|
|
|
total_steps = (len(train_dataset) // (4 * 4)) * 3 |
|
|
print(f"\nπ Training Info:") |
|
|
print(f" Total steps: ~{total_steps}") |
|
|
print(f" Epochs: 3") |
|
|
print(f" Effective batch size: 16") |
|
|
print(f" Expected time: ~45-60 minutes") |
|
|
print(f" Checkpoints saved every 50 steps") |
|
|
|
|
|
|
|
|
print("\nπ Starting training...") |
|
|
print("π Watch live metrics: https://huggingface.co/spaces/evalstate/trl-trackio-dashboard") |
|
|
print("-" * 60) |
|
|
trainer.train() |
|
|
|
|
|
|
|
|
print("\nπΎ Pushing final model to Hub...") |
|
|
trainer.push_to_hub() |
|
|
|
|
|
|
|
|
print("\nπ Finalizing Trackio metrics...") |
|
|
trackio.finish() |
|
|
|
|
|
print("\n" + "=" * 60) |
|
|
print("β
Training complete!") |
|
|
print(f"π¦ Model: https://huggingface.co/{username}/qwen-capybara-medium") |
|
|
print(f"π Metrics: https://huggingface.co/spaces/evalstate/trl-trackio-dashboard") |
|
|
print(f"π‘ Try the model with:") |
|
|
print(f' from transformers import pipeline') |
|
|
print(f' generator = pipeline("text-generation", model="{username}/qwen-capybara-medium")') |
|
|
print("=" * 60) |
|
|
|