import torch import torch.distributed as dist from torchvision import transforms as tvtrans import os import os.path as osp import time import timeit import copy import json import pickle import PIL.Image import numpy as np from datetime import datetime from easydict import EasyDict as edict from collections import OrderedDict from lib.cfg_holder import cfg_unique_holder as cfguh from lib.data_factory import get_dataset, get_sampler, collate from lib.model_zoo import \ get_model, get_optimizer, get_scheduler from lib.log_service import print_log from ..utils import train as train_base from ..utils import eval as eval_base from ..utils import train_stage as tsbase from ..utils import eval_stage as esbase from .. import sync from .sd_default import auto_merge_imlist, latent2im, color_adjust from .sd_default import eval as eval_base from .sd_default import eval_stage as eval_stage_base ############### # some helper # ############### def atomic_save(cfg, net, opt, step, path): if isinstance(net, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)): netm = net.module else: netm = net sd = netm.state_dict() slimmed_sd = [(ki, vi) for ki, vi in sd.items() if ki.find('autokl')!=0 and ki.find('optimus')!=0 and ki.find('clip')!=0] checkpoint = { "config" : cfg, "state_dict" : OrderedDict(slimmed_sd), "step" : step} if opt is not None: checkpoint['optimizer_states'] = opt.state_dict() import io import fsspec bytesbuffer = io.BytesIO() torch.save(checkpoint, bytesbuffer) with fsspec.open(path, "wb") as f: f.write(bytesbuffer.getvalue()) def load_state_dict(net, cfg): pretrained_pth_full = cfg.get('pretrained_pth_full' , None) pretrained_ckpt_full = cfg.get('pretrained_ckpt_full', None) pretrained_pth = cfg.get('pretrained_pth' , None) pretrained_ckpt = cfg.get('pretrained_ckpt' , None) pretrained_pth_dm = cfg.get('pretrained_pth_dm' , None) pretrained_pth_ema = cfg.get('pretrained_pth_ema' , None) strict_sd = cfg.get('strict_sd', False) errmsg = "Overlapped model state_dict! This is undesired behavior!" if pretrained_pth_full is not None or pretrained_ckpt_full is not None: assert (pretrained_pth is None) and \ (pretrained_ckpt is None) and \ (pretrained_pth_dm is None) and \ (pretrained_pth_ema is None), errmsg if pretrained_pth_full is not None: target_file = pretrained_pth_full sd = torch.load(target_file, map_location='cpu') assert pretrained_ckpt is None, errmsg else: target_file = pretrained_ckpt_full sd = torch.load(target_file, map_location='cpu')['state_dict'] print_log('Load full model from [{}] strict [{}].'.format( target_file, strict_sd)) net.load_state_dict(sd, strict=strict_sd) if pretrained_pth is not None or pretrained_ckpt is not None: assert (pretrained_ckpt_full is None) and \ (pretrained_pth_full is None) and \ (pretrained_pth_dm is None) and \ (pretrained_pth_ema is None), errmsg if pretrained_pth is not None: target_file = pretrained_pth sd = torch.load(target_file, map_location='cpu') assert pretrained_ckpt is None, errmsg else: target_file = pretrained_ckpt sd = torch.load(target_file, map_location='cpu')['state_dict'] print_log('Load model from [{}] strict [{}].'.format( target_file, strict_sd)) sd_extra = [(ki, vi) for ki, vi in net.state_dict().items() \ if ki.find('autokl')==0 or ki.find('optimus')==0 or ki.find('clip')==0] sd.update(OrderedDict(sd_extra)) net.load_state_dict(sd, strict=strict_sd) if pretrained_pth_dm is not None: assert (pretrained_ckpt_full is None) and \ (pretrained_pth_full is None) and \ (pretrained_pth is None) and \ (pretrained_ckpt is None), errmsg print_log('Load diffusion model from [{}] strict [{}].'.format( pretrained_pth_dm, strict_sd)) sd = torch.load(pretrained_pth_dm, map_location='cpu') net.model.diffusion_model.load_state_dict(sd, strict=strict_sd) if pretrained_pth_ema is not None: assert (pretrained_ckpt_full is None) and \ (pretrained_pth_full is None) and \ (pretrained_pth is None) and \ (pretrained_ckpt is None), errmsg print_log('Load unet ema model from [{}] strict [{}].'.format( pretrained_pth_ema, strict_sd)) sd = torch.load(pretrained_pth_ema, map_location='cpu') net.model_ema.load_state_dict(sd, strict=strict_sd) ################### # official stages # ################### class eval(eval_base): pass class eval_stage(eval_stage_base): """ Evaluation of both prompt and vision """ def __init__(self): from ..model_zoo.ddim_vd import DDIMSampler_VD self.sampler = DDIMSampler_VD @torch.no_grad() def sample( self, net, sampler, context, otype, ctype, image_output_dim, text_latent_dim, scale, n_samples, ddim_steps, ddim_eta): if ctype == 'prompt': c = net.clip_encode_text(n_samples * [context]) uc = None if scale != 1.0: uc = net.clip_encode_text(n_samples * [""]) elif ctype == 'vision': context = context[None].repeat(n_samples, 1, 1, 1) c = net.clip_encode_vision(context) uc = None if scale != 1.0: dummy = torch.zeros_like(context) uc = net.clip_encode_vision(dummy) if otype == 'image': h, w = image_output_dim shape = [n_samples, 4, h//8, w//8] rv = sampler.sample( steps=ddim_steps, shape=shape, conditioning=c, unconditional_guidance_scale=scale, unconditional_conditioning=uc, xtype=otype, ctype=ctype, eta=ddim_eta, verbose=False,) elif otype == 'text': n = text_latent_dim shape = [n_samples, n] rv = sampler.sample( steps=ddim_steps, shape=shape, conditioning=c, unconditional_guidance_scale=scale, unconditional_conditioning=uc, xtype=otype, ctype=ctype, eta=ddim_eta, verbose=False,) return rv def decode_and_save( self, netm, z, xtype, ctype, path, name, suffix, color_adj=False, color_adj_to=None): if xtype == 'image': x = netm.autokl_decode(z) name = 't2i_'+name if ctype == 'prompt' else 'v2i_'+name if color_adj and (ctype=='vision'): keep_ratio = cfguh().cfg.eval.get('color_adj_keep_ratio', 0.5) simple = cfguh().cfg.eval.get('color_adj_simple', True) x_adj = [] for xi in x: color_adj_f = color_adjust(ref_from=(xi+1)/2, ref_to=color_adj_to) xi_adj = color_adj_f((xi+1)/2, keep=keep_ratio, simple=simple) x_adj.append(xi_adj) x = x_adj self.save_images(x, name, path, suffix=suffix) elif xtype == 'text': prompt_temperature = cfguh().cfg.eval.get('prompt_temperature', 1.0) x = netm.optimus_decode(z, temperature=prompt_temperature) name = 't2t_'+name if ctype == 'prompt' else 'v2t_'+name prompt_merge_same_adj_word = cfguh().cfg.eval.get('prompt_merge_same_adj_word', False) if prompt_merge_same_adj_word: xnew = [] for xi in x: xi_split = xi.split() xinew = [] for idxi, wi in enumerate(xi_split): if idxi!=0 and wi==xi_split[idxi-1]: continue xinew.append(wi) xnew.append(' '.join(xinew)) x = xnew self.save_text(x, name, path, suffix=suffix) def save_images(self, x, name, path, suffix=''): if isinstance(x, torch.Tensor): single_input = len(x.shape) == 3 if single_input: x = x[None] x = torch.clamp((x+1.0)/2.0, min=0.0, max=1.0) x = [tvtrans.ToPILImage()(xi) for xi in x] xlist = [np.array(xi) for xi in x] elif isinstance(x, list): xlist = x canvas = auto_merge_imlist(xlist) image_name = '{}{}.png'.format(name, suffix) PIL.Image.fromarray(canvas).save(osp.join(path, image_name)) def save_text(self, x, name, path, suffix=''): file_name = '{}{}.txt'.format(name, suffix) with open(osp.join(path, file_name) ,'w') as f: for xi in x: f.write(xi+'\n') def __call__(self, **paras): cfg = cfguh().cfg cfgv = cfg.eval net = self.get_net(paras) eval_cnt = paras.get('eval_cnt', None) fix_seed = cfgv.get('fix_seed', False) LRANK = sync.get_rank('local') LWSIZE = sync.get_world_size('local') output_path = self.get_image_path() self.create_dir(output_path) eval_cnt = paras.get('eval_cnt', None) suffix='' if eval_cnt is None else '_'+str(eval_cnt) if isinstance(net, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)): netm = net.module else: netm = net with_ema = getattr(netm, 'model_ema', None) is not None sampler = self.sampler(netm) setattr(netm, 'device', LRANK) # Trick color_adj = cfguh().cfg.eval.get('color_adj', False) replicate = cfgv.get('replicate', 1) conditioning = cfgv.conditioning * replicate conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE] seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE] for conditioningi, seedi in zip(conditioning_local, seed_increment): if conditioningi == 'SKIP': continue ci, otypei = conditioningi if osp.isfile(ci): # is vision output_name = osp.splitext(osp.basename(ci))[0] ci = tvtrans.ToTensor()(PIL.Image.open(ci)) ci = ci*2 - 1 ctypei = 'vision' else: # is prompt output_name = ci.strip().replace(' ', '-') ctypei = 'prompt' if fix_seed: np.random.seed(cfg.env.rnd_seed + seedi) torch.manual_seed(cfg.env.rnd_seed + seedi + 100) suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100) else: suffixi = suffix if with_ema: with netm.ema_scope(): z, _ = self.sample(netm, sampler, ci, otypei, ctypei, **cfgv.sample) else: z, _ = self.sample(netm, sampler, ci, otypei, ctypei, **cfgv.sample) self.decode_and_save( netm, z, otypei, ctypei, output_path, output_name, suffixi, color_adj=color_adj, color_adj_to=conditioningi[0],) if eval_cnt is not None: print_log('Demo printed for {}'.format(eval_cnt)) return {} ################ # basic stages # ################ class eval_stage_basic(eval_stage_base): @torch.no_grad() def sample(self, net, sampler, visual_hint, output_dim, scale, n_samples, ddim_steps, ddim_eta): h, w = output_dim vh = PIL.Image.open(visual_hint) c = net.clip_encode_vision(n_samples * [vh]) uc = None if scale != 1.0: dummy = torch.zeros_like(tvtrans.ToTensor()(vh)) uc = net.clip_encode_vision(n_samples * [dummy]) shape = [4, h//8, w//8] rv = sampler.sample( S=ddim_steps, conditioning=c, batch_size=n_samples, shape=shape, verbose=False, unconditional_guidance_scale=scale, unconditional_conditioning=uc, eta=ddim_eta) return rv def __call__(self, **paras): cfg = cfguh().cfg cfgv = cfg.eval net = paras['net'] eval_cnt = paras.get('eval_cnt', None) fix_seed = cfgv.get('fix_seed', False) LRANK = sync.get_rank('local') LWSIZE = sync.get_world_size('local') image_path = self.get_image_path() self.create_dir(image_path) eval_cnt = paras.get('eval_cnt', None) suffix='' if eval_cnt is None else '_'+str(eval_cnt) if isinstance(net, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)): netm = net.module else: netm = net with_ema = getattr(netm, 'model_ema', None) is not None sampler = self.sampler(netm) setattr(netm, 'device', LRANK) # Trick color_adj = cfguh().cfg.eval.get('color_adj', False) color_adj_keep_ratio = cfguh().cfg.eval.get('color_adj_keep_ratio', 0.5) color_adj_simple = cfguh().cfg.eval.get('color_adj_simple', True) replicate = cfgv.get('replicate', 1) conditioning = cfgv.conditioning * replicate conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE] seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE] for ci, seedi in zip(conditioning_local, seed_increment): if ci == 'SKIP': continue draw_filename = osp.splitext(osp.basename(ci))[0] if fix_seed: np.random.seed(cfg.env.rnd_seed + seedi) torch.manual_seed(cfg.env.rnd_seed + seedi + 100) suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100) else: suffixi = suffix if with_ema: with netm.ema_scope(): x, _ = self.sample(netm, sampler, ci, **cfgv.sample) else: x, _ = self.sample(netm, sampler, ci, **cfgv.sample) demo_image = latent2im(netm, x) if color_adj: x_adj = [] for demoi in demo_image: color_adj_f = color_adjust(ref_from=demoi, ref_to=ci) xi_adj = color_adj_f(demoi, keep=color_adj_keep_ratio, simple=color_adj_simple) x_adj.append(xi_adj) demo_image = x_adj self.save_images(demo_image, draw_filename, image_path, suffix=suffixi) if eval_cnt is not None: print_log('Demo printed for {}'.format(eval_cnt)) return {} ####################### # dual context stages # ####################### class eval_stage_dc(eval_stage_base): def __init__(self): from ..model_zoo.ddim_dualcontext import DDIMSampler_DualContext self.sampler = DDIMSampler_DualContext @torch.no_grad() def sample( self, net, sampler, conditioning, output_dim, scale, n_samples, ddim_steps, ddim_eta): ctype, cvalue =conditioning if ctype == 'prompt': return self.sample_text( net, sampler, cvalue, output_dim, scale, n_samples, ddim_steps, ddim_eta) elif ctype == 'vision': return self.sample_vision( net, sampler, cvalue, output_dim, scale, n_samples, ddim_steps, ddim_eta) else: raise ValueError @torch.no_grad() def sample_text( self, net, sampler, prompt, output_dim, scale, n_samples, ddim_steps, ddim_eta): h, w = output_dim uc = None if scale != 1.0: uc = net.clip_encode_text(n_samples * [""]) c = net.clip_encode_text(n_samples * [prompt]) shape = [n_samples, 4, h//8, w//8] rv = sampler.sample_text( steps=ddim_steps, shape=shape, conditioning=c, unconditional_guidance_scale=scale, unconditional_conditioning=uc, eta=ddim_eta, verbose=False,) return rv @torch.no_grad() def sample_vision( self, net, sampler, visual_hint, output_dim, scale, n_samples, ddim_steps, ddim_eta): h, w = output_dim if len(visual_hint.shape) == 3: visual_hint=visual_hint[None].repeat(n_samples, 1, 1, 1) else: raise ValueError c = net.clip_encode_vision(visual_hint) uc = None if scale != 1.0: visual_hint_blank = torch.zeros_like(visual_hint) uc = net.clip_encode_vision(visual_hint_blank) shape = [n_samples, 4, h//8, w//8] rv = sampler.sample_vision( steps=ddim_steps, shape=shape, conditioning=c, unconditional_guidance_scale=scale, unconditional_conditioning=uc, eta=ddim_eta, verbose=False,) return rv def __call__(self, **paras): cfg = cfguh().cfg cfgv = cfg.eval net = self.get_net(paras) eval_cnt = paras.get('eval_cnt', None) fix_seed = cfgv.get('fix_seed', False) LRANK = sync.get_rank('local') LWSIZE = sync.get_world_size('local') image_path = self.get_image_path() self.create_dir(image_path) suffix='' if eval_cnt is None else '_'+str(eval_cnt) if isinstance(net, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)): netm = net.module else: netm = net with_ema = getattr(netm, 'model_ema', None) is not None sampler = self.sampler(netm) setattr(netm, 'device', LRANK) # Trick color_adj = cfguh().cfg.eval.get('color_adj', False) color_adj_keep_ratio = cfguh().cfg.eval.get('color_adj_keep_ratio', 0.5) color_adj_simple = cfguh().cfg.eval.get('color_adj_simple', True) replicate = cfgv.get('replicate', 1) conditioning = cfgv.conditioning * replicate conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE] seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE] for ci, seedi in zip(conditioning_local, seed_increment): if ci == 'SKIP': continue if osp.isfile(ci): # is vision draw_filename = 'v2i_' + osp.splitext(osp.basename(ci))[0] ci = tvtrans.ToTensor()(PIL.Image.open(ci)) ci = ci*2 - 1 ci = ('vision', ci) else: # is prompt draw_filename = 't2i_' + ci.strip().replace(' ', '-') ci = ('prompt', ci) if fix_seed: np.random.seed(cfg.env.rnd_seed + seedi) torch.manual_seed(cfg.env.rnd_seed + seedi + 100) suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100) else: suffixi = suffix if with_ema: with netm.ema_scope(): x, _ = self.sample(netm, sampler, ci, **cfgv.sample) else: x, _ = self.sample(netm, sampler, ci, **cfgv.sample) demo_image = latent2im(netm, x) if color_adj and ci[0] == 'vision': x_adj = [] for demoi in demo_image: color_adj_f = color_adjust(ref_from=demoi, ref_to=ci[1]) xi_adj = color_adj_f(demoi, keep=color_adj_keep_ratio, simple=color_adj_simple) x_adj.append(xi_adj) demo_image = x_adj self.save_images(demo_image, draw_filename, image_path, suffix=suffixi) if eval_cnt is not None: print_log('Demo printed for {}'.format(eval_cnt)) return {}