dineshsai07's picture
Add files using upload-large-folder tool
0ccacae verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from contextlib import contextmanager
from lib.model_zoo.common.get_model import get_model, register
# from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
from .diffusion_modules import Encoder, Decoder
from .distributions import DiagonalGaussianDistribution
# class VQModel(nn.Module):
# def __init__(self,
# ddconfig,
# lossconfig,
# n_embed,
# embed_dim,
# ckpt_path=None,
# ignore_keys=[],
# image_key="image",
# colorize_nlabels=None,
# monitor=None,
# batch_resize_range=None,
# scheduler_config=None,
# lr_g_factor=1.0,
# remap=None,
# sane_index_shape=False, # tell vector quantizer to return indices as bhw
# use_ema=False
# ):
# super().__init__()
# self.embed_dim = embed_dim
# self.n_embed = n_embed
# self.image_key = image_key
# self.encoder = Encoder(**ddconfig)
# self.decoder = Decoder(**ddconfig)
# self.loss = instantiate_from_config(lossconfig)
# self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
# remap=remap,
# sane_index_shape=sane_index_shape)
# self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
# self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
# if colorize_nlabels is not None:
# assert type(colorize_nlabels)==int
# self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
# if monitor is not None:
# self.monitor = monitor
# self.batch_resize_range = batch_resize_range
# if self.batch_resize_range is not None:
# print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
# self.use_ema = use_ema
# if self.use_ema:
# self.model_ema = LitEma(self)
# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
# if ckpt_path is not None:
# self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
# self.scheduler_config = scheduler_config
# self.lr_g_factor = lr_g_factor
# @contextmanager
# def ema_scope(self, context=None):
# if self.use_ema:
# self.model_ema.store(self.parameters())
# self.model_ema.copy_to(self)
# if context is not None:
# print(f"{context}: Switched to EMA weights")
# try:
# yield None
# finally:
# if self.use_ema:
# self.model_ema.restore(self.parameters())
# if context is not None:
# print(f"{context}: Restored training weights")
# def init_from_ckpt(self, path, ignore_keys=list()):
# sd = torch.load(path, map_location="cpu")["state_dict"]
# keys = list(sd.keys())
# for k in keys:
# for ik in ignore_keys:
# if k.startswith(ik):
# print("Deleting key {} from state_dict.".format(k))
# del sd[k]
# missing, unexpected = self.load_state_dict(sd, strict=False)
# print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
# if len(missing) > 0:
# print(f"Missing Keys: {missing}")
# print(f"Unexpected Keys: {unexpected}")
# def on_train_batch_end(self, *args, **kwargs):
# if self.use_ema:
# self.model_ema(self)
# def encode(self, x):
# h = self.encoder(x)
# h = self.quant_conv(h)
# quant, emb_loss, info = self.quantize(h)
# return quant, emb_loss, info
# def encode_to_prequant(self, x):
# h = self.encoder(x)
# h = self.quant_conv(h)
# return h
# def decode(self, quant):
# quant = self.post_quant_conv(quant)
# dec = self.decoder(quant)
# return dec
# def decode_code(self, code_b):
# quant_b = self.quantize.embed_code(code_b)
# dec = self.decode(quant_b)
# return dec
# def forward(self, input, return_pred_indices=False):
# quant, diff, (_,_,ind) = self.encode(input)
# dec = self.decode(quant)
# if return_pred_indices:
# return dec, diff, ind
# return dec, diff
# def get_input(self, batch, k):
# x = batch[k]
# if len(x.shape) == 3:
# x = x[..., None]
# x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
# if self.batch_resize_range is not None:
# lower_size = self.batch_resize_range[0]
# upper_size = self.batch_resize_range[1]
# if self.global_step <= 4:
# # do the first few batches with max size to avoid later oom
# new_resize = upper_size
# else:
# new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
# if new_resize != x.shape[2]:
# x = F.interpolate(x, size=new_resize, mode="bicubic")
# x = x.detach()
# return x
# def training_step(self, batch, batch_idx, optimizer_idx):
# # https://github.com/pytorch/pytorch/issues/37142
# # try not to fool the heuristics
# x = self.get_input(batch, self.image_key)
# xrec, qloss, ind = self(x, return_pred_indices=True)
# if optimizer_idx == 0:
# # autoencode
# aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
# last_layer=self.get_last_layer(), split="train",
# predicted_indices=ind)
# self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
# return aeloss
# if optimizer_idx == 1:
# # discriminator
# discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
# last_layer=self.get_last_layer(), split="train")
# self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
# return discloss
# def validation_step(self, batch, batch_idx):
# log_dict = self._validation_step(batch, batch_idx)
# with self.ema_scope():
# log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
# return log_dict
# def _validation_step(self, batch, batch_idx, suffix=""):
# x = self.get_input(batch, self.image_key)
# xrec, qloss, ind = self(x, return_pred_indices=True)
# aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
# self.global_step,
# last_layer=self.get_last_layer(),
# split="val"+suffix,
# predicted_indices=ind
# )
# discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
# self.global_step,
# last_layer=self.get_last_layer(),
# split="val"+suffix,
# predicted_indices=ind
# )
# rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
# self.log(f"val{suffix}/rec_loss", rec_loss,
# prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
# self.log(f"val{suffix}/aeloss", aeloss,
# prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
# if version.parse(pl.__version__) >= version.parse('1.4.0'):
# del log_dict_ae[f"val{suffix}/rec_loss"]
# self.log_dict(log_dict_ae)
# self.log_dict(log_dict_disc)
# return self.log_dict
# def configure_optimizers(self):
# lr_d = self.learning_rate
# lr_g = self.lr_g_factor*self.learning_rate
# print("lr_d", lr_d)
# print("lr_g", lr_g)
# opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
# list(self.decoder.parameters())+
# list(self.quantize.parameters())+
# list(self.quant_conv.parameters())+
# list(self.post_quant_conv.parameters()),
# lr=lr_g, betas=(0.5, 0.9))
# opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
# lr=lr_d, betas=(0.5, 0.9))
# if self.scheduler_config is not None:
# scheduler = instantiate_from_config(self.scheduler_config)
# print("Setting up LambdaLR scheduler...")
# scheduler = [
# {
# 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
# 'interval': 'step',
# 'frequency': 1
# },
# {
# 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
# 'interval': 'step',
# 'frequency': 1
# },
# ]
# return [opt_ae, opt_disc], scheduler
# return [opt_ae, opt_disc], []
# def get_last_layer(self):
# return self.decoder.conv_out.weight
# def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
# log = dict()
# x = self.get_input(batch, self.image_key)
# x = x.to(self.device)
# if only_inputs:
# log["inputs"] = x
# return log
# xrec, _ = self(x)
# if x.shape[1] > 3:
# # colorize with random projection
# assert xrec.shape[1] > 3
# x = self.to_rgb(x)
# xrec = self.to_rgb(xrec)
# log["inputs"] = x
# log["reconstructions"] = xrec
# if plot_ema:
# with self.ema_scope():
# xrec_ema, _ = self(x)
# if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
# log["reconstructions_ema"] = xrec_ema
# return log
# def to_rgb(self, x):
# assert self.image_key == "segmentation"
# if not hasattr(self, "colorize"):
# self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
# x = F.conv2d(x, weight=self.colorize)
# x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
# return x
# class VQModelInterface(VQModel):
# def __init__(self, embed_dim, *args, **kwargs):
# super().__init__(embed_dim=embed_dim, *args, **kwargs)
# self.embed_dim = embed_dim
# def encode(self, x):
# h = self.encoder(x)
# h = self.quant_conv(h)
# return h
# def decode(self, h, force_not_quantize=False):
# # also go through quantization layer
# if not force_not_quantize:
# quant, emb_loss, info = self.quantize(h)
# else:
# quant = h
# quant = self.post_quant_conv(quant)
# dec = self.decoder(quant)
# return dec
@register('autoencoderkl')
class AutoencoderKL(nn.Module):
def __init__(self,
ddconfig,
lossconfig,
embed_dim,
ckpt_path=None,
ignore_keys=[],
image_key="image",
colorize_nlabels=None,
monitor=None,):
super().__init__()
self.image_key = image_key
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
assert ddconfig["double_z"]
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
self.embed_dim = embed_dim
if colorize_nlabels is not None:
assert type(colorize_nlabels)==int
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
if monitor is not None:
self.monitor = monitor
def encode(self, x):
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def decode(self, z):
z = self.post_quant_conv(z)
dec = self.decoder(z)
return dec
def forward(self, input, sample_posterior=True):
posterior = self.encode(input)
if sample_posterior:
z = posterior.sample()
else:
z = posterior.mode()
dec = self.decode(z)
return dec, posterior
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
return x
def training_step(self, batch, batch_idx, optimizer_idx):
inputs = self.get_input(batch, self.image_key)
reconstructions, posterior = self(inputs)
if optimizer_idx == 0:
# train encoder+decoder+logvar
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
return aeloss
if optimizer_idx == 1:
# train the discriminator
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
return discloss
def validation_step(self, batch, batch_idx):
inputs = self.get_input(batch, self.image_key)
reconstructions, posterior = self(inputs)
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
last_layer=self.get_last_layer(), split="val")
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
last_layer=self.get_last_layer(), split="val")
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
self.log_dict(log_dict_ae)
self.log_dict(log_dict_disc)
return self.log_dict
def configure_optimizers(self):
lr = self.learning_rate
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
list(self.decoder.parameters())+
list(self.quant_conv.parameters())+
list(self.post_quant_conv.parameters()),
lr=lr, betas=(0.5, 0.9))
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
lr=lr, betas=(0.5, 0.9))
return [opt_ae, opt_disc], []
def get_last_layer(self):
return self.decoder.conv_out.weight
@torch.no_grad()
def log_images(self, batch, only_inputs=False, **kwargs):
log = dict()
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
if not only_inputs:
xrec, posterior = self(x)
if x.shape[1] > 3:
# colorize with random projection
assert xrec.shape[1] > 3
x = self.to_rgb(x)
xrec = self.to_rgb(xrec)
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
log["reconstructions"] = xrec
log["inputs"] = x
return log
def to_rgb(self, x):
assert self.image_key == "segmentation"
if not hasattr(self, "colorize"):
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
x = F.conv2d(x, weight=self.colorize)
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
return x
class IdentityFirstStage(nn.Module):
def __init__(self, *args, vq_interface=False, **kwargs):
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
super().__init__()
def encode(self, x, *args, **kwargs):
return x
def decode(self, x, *args, **kwargs):
return x
def quantize(self, x, *args, **kwargs):
if self.vq_interface:
return x, None, [None, None, None]
return x
def forward(self, x, *args, **kwargs):
return x