File size: 20,557 Bytes
0ccacae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import torch
import torch.distributed as dist
from torchvision import transforms as tvtrans
import os
import os.path as osp
import time
import timeit
import copy
import json
import pickle
import PIL.Image
import numpy as np
from datetime import datetime
from easydict import EasyDict as edict
from collections import OrderedDict

from lib.cfg_holder import cfg_unique_holder as cfguh
from lib.data_factory import get_dataset, get_sampler, collate
from lib.model_zoo import \
    get_model, get_optimizer, get_scheduler
from lib.log_service import print_log

from ..utils import train as train_base
from ..utils import eval as eval_base
from ..utils import train_stage as tsbase
from ..utils import eval_stage as esbase
from .. import sync

from .sd_default import auto_merge_imlist, latent2im, color_adjust
from .sd_default import eval as eval_base
from .sd_default import eval_stage as eval_stage_base

###############
# some helper #
###############

def atomic_save(cfg, net, opt, step, path):
    if isinstance(net, (torch.nn.DataParallel,
                        torch.nn.parallel.DistributedDataParallel)):
        netm = net.module
    else:
        netm = net
    sd = netm.state_dict()
    slimmed_sd = [(ki, vi) for ki, vi in sd.items()
        if ki.find('autokl')!=0 and ki.find('optimus')!=0 and ki.find('clip')!=0]

    checkpoint = {
        "config" : cfg,
        "state_dict" : OrderedDict(slimmed_sd),
        "step" : step}
    if opt is not None:
        checkpoint['optimizer_states'] = opt.state_dict()
    import io
    import fsspec
    bytesbuffer = io.BytesIO()
    torch.save(checkpoint, bytesbuffer)
    with fsspec.open(path, "wb") as f:
        f.write(bytesbuffer.getvalue())

def load_state_dict(net, cfg):
    pretrained_pth_full  = cfg.get('pretrained_pth_full' , None)
    pretrained_ckpt_full = cfg.get('pretrained_ckpt_full', None)
    pretrained_pth       = cfg.get('pretrained_pth'      , None)
    pretrained_ckpt      = cfg.get('pretrained_ckpt'     , None)
    pretrained_pth_dm    = cfg.get('pretrained_pth_dm'   , None)
    pretrained_pth_ema   = cfg.get('pretrained_pth_ema'  , None)
    strict_sd = cfg.get('strict_sd', False)
    errmsg = "Overlapped model state_dict! This is undesired behavior!"

    if pretrained_pth_full is not None or pretrained_ckpt_full is not None:
        assert (pretrained_pth is None) and \
               (pretrained_ckpt is None) and \
               (pretrained_pth_dm is None) and \
               (pretrained_pth_ema is None), errmsg            
        if pretrained_pth_full is not None:
            target_file = pretrained_pth_full
            sd = torch.load(target_file, map_location='cpu')
            assert pretrained_ckpt is None, errmsg
        else:
            target_file = pretrained_ckpt_full
            sd = torch.load(target_file, map_location='cpu')['state_dict']
        print_log('Load full model from [{}] strict [{}].'.format(
            target_file, strict_sd))
        net.load_state_dict(sd, strict=strict_sd)

    if pretrained_pth is not None or pretrained_ckpt is not None:
        assert (pretrained_ckpt_full is None) and \
               (pretrained_pth_full is None) and \
               (pretrained_pth_dm is None) and \
               (pretrained_pth_ema is None), errmsg
        if pretrained_pth is not None:
            target_file = pretrained_pth
            sd = torch.load(target_file, map_location='cpu')
            assert pretrained_ckpt is None, errmsg
        else:
            target_file = pretrained_ckpt
            sd = torch.load(target_file, map_location='cpu')['state_dict']
        print_log('Load model from [{}] strict [{}].'.format(
            target_file, strict_sd))
        sd_extra = [(ki, vi) for ki, vi in net.state_dict().items() \
            if ki.find('autokl')==0 or ki.find('optimus')==0 or ki.find('clip')==0]
        sd.update(OrderedDict(sd_extra))
        net.load_state_dict(sd, strict=strict_sd)

    if pretrained_pth_dm is not None:
        assert (pretrained_ckpt_full is None) and \
               (pretrained_pth_full is None) and \
               (pretrained_pth is None) and \
               (pretrained_ckpt is None), errmsg
        print_log('Load diffusion model from [{}] strict [{}].'.format(
            pretrained_pth_dm, strict_sd))
        sd = torch.load(pretrained_pth_dm, map_location='cpu')
        net.model.diffusion_model.load_state_dict(sd, strict=strict_sd)

    if pretrained_pth_ema is not None:
        assert (pretrained_ckpt_full is None) and \
               (pretrained_pth_full is None) and \
               (pretrained_pth is None) and \
               (pretrained_ckpt is None), errmsg
        print_log('Load unet ema model from [{}] strict [{}].'.format(
            pretrained_pth_ema, strict_sd))
        sd = torch.load(pretrained_pth_ema, map_location='cpu')
        net.model_ema.load_state_dict(sd, strict=strict_sd)

###################
# official stages #
###################

class eval(eval_base):
    pass

class eval_stage(eval_stage_base):
    """
    Evaluation of both prompt and vision
    """
    def __init__(self):
        from ..model_zoo.ddim_vd import DDIMSampler_VD
        self.sampler = DDIMSampler_VD

    @torch.no_grad()
    def sample(
            self, net, sampler, context, otype, ctype, image_output_dim, text_latent_dim,
            scale, n_samples, ddim_steps, ddim_eta):
        if ctype == 'prompt':
            c = net.clip_encode_text(n_samples * [context])
            uc = None
            if scale != 1.0:
                uc = net.clip_encode_text(n_samples * [""])
        elif ctype == 'vision':
            context = context[None].repeat(n_samples, 1, 1, 1)
            c = net.clip_encode_vision(context)
            uc = None
            if scale != 1.0:
                dummy = torch.zeros_like(context)
                uc = net.clip_encode_vision(dummy)

        if otype == 'image':
            h, w = image_output_dim
            shape = [n_samples, 4, h//8, w//8]
            rv = sampler.sample(
                steps=ddim_steps,
                shape=shape,
                conditioning=c,
                unconditional_guidance_scale=scale,
                unconditional_conditioning=uc,
                xtype=otype, ctype=ctype,
                eta=ddim_eta,
                verbose=False,)
        elif otype == 'text':
            n = text_latent_dim
            shape = [n_samples, n]
            rv = sampler.sample(
                steps=ddim_steps,
                shape=shape,
                conditioning=c,
                unconditional_guidance_scale=scale,
                unconditional_conditioning=uc,
                xtype=otype, ctype=ctype,
                eta=ddim_eta,
                verbose=False,)

        return rv

    def decode_and_save(
            self, netm, z, xtype, ctype, path, name, suffix,
            color_adj=False, color_adj_to=None):
        if xtype == 'image':
            x = netm.autokl_decode(z)
            name = 't2i_'+name if ctype == 'prompt' else 'v2i_'+name
            if color_adj and (ctype=='vision'):
                keep_ratio = cfguh().cfg.eval.get('color_adj_keep_ratio', 0.5)
                simple = cfguh().cfg.eval.get('color_adj_simple', True)
                x_adj = []
                for xi in x:
                    color_adj_f = color_adjust(ref_from=(xi+1)/2, ref_to=color_adj_to)
                    xi_adj = color_adj_f((xi+1)/2, keep=keep_ratio, simple=simple)
                    x_adj.append(xi_adj)
                x = x_adj
            self.save_images(x, name, path, suffix=suffix)
        elif xtype == 'text':
            prompt_temperature = cfguh().cfg.eval.get('prompt_temperature', 1.0)
            x = netm.optimus_decode(z, temperature=prompt_temperature)
            name = 't2t_'+name if ctype == 'prompt' else 'v2t_'+name
            prompt_merge_same_adj_word = cfguh().cfg.eval.get('prompt_merge_same_adj_word', False)
            if prompt_merge_same_adj_word:
                xnew = []
                for xi in x:
                    xi_split = xi.split()
                    xinew = []
                    for idxi, wi in enumerate(xi_split):
                        if idxi!=0 and wi==xi_split[idxi-1]:
                            continue
                        xinew.append(wi)
                    xnew.append(' '.join(xinew))
                x = xnew
            self.save_text(x, name, path, suffix=suffix)

    def save_images(self, x, name, path, suffix=''):
        if isinstance(x, torch.Tensor):
            single_input = len(x.shape) == 3
            if single_input:
                x = x[None]
            x = torch.clamp((x+1.0)/2.0, min=0.0, max=1.0)
            x = [tvtrans.ToPILImage()(xi) for xi in x]
            xlist = [np.array(xi) for xi in x]
        elif isinstance(x, list):
            xlist = x
        canvas = auto_merge_imlist(xlist)
        image_name = '{}{}.png'.format(name, suffix)
        PIL.Image.fromarray(canvas).save(osp.join(path, image_name))

    def save_text(self, x, name, path, suffix=''):
        file_name = '{}{}.txt'.format(name, suffix)
        with open(osp.join(path, file_name) ,'w') as f:
            for xi in x:
                f.write(xi+'\n')

    def __call__(self, **paras):
        cfg = cfguh().cfg
        cfgv = cfg.eval

        net = self.get_net(paras)
        eval_cnt = paras.get('eval_cnt', None)
        fix_seed = cfgv.get('fix_seed', False)

        LRANK = sync.get_rank('local')
        LWSIZE = sync.get_world_size('local')

        output_path = self.get_image_path()
        self.create_dir(output_path)
        eval_cnt = paras.get('eval_cnt', None)
        suffix='' if eval_cnt is None else '_'+str(eval_cnt)

        if isinstance(net, (torch.nn.DataParallel,
                            torch.nn.parallel.DistributedDataParallel)):
            netm = net.module
        else:
            netm = net

        with_ema = getattr(netm, 'model_ema', None) is not None
        sampler = self.sampler(netm)
        setattr(netm, 'device', LRANK) # Trick

        color_adj = cfguh().cfg.eval.get('color_adj', False)

        replicate = cfgv.get('replicate', 1)
        conditioning = cfgv.conditioning * replicate
        conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE]
        seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE]

        for conditioningi, seedi in zip(conditioning_local, seed_increment):
            if conditioningi == 'SKIP':
                continue

            ci, otypei = conditioningi

            if osp.isfile(ci):
                # is vision
                output_name = osp.splitext(osp.basename(ci))[0]
                ci = tvtrans.ToTensor()(PIL.Image.open(ci))
                ci = ci*2 - 1
                ctypei = 'vision'
            else:
                # is prompt
                output_name = ci.strip().replace(' ', '-')
                ctypei = 'prompt'

            if fix_seed:
                np.random.seed(cfg.env.rnd_seed + seedi)
                torch.manual_seed(cfg.env.rnd_seed + seedi + 100)
                suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100)
            else:
                suffixi = suffix

            if with_ema:
                with netm.ema_scope():
                    z, _ = self.sample(netm, sampler, ci, otypei, ctypei, **cfgv.sample)
            else:
                z, _ = self.sample(netm, sampler, ci, otypei, ctypei, **cfgv.sample)

            self.decode_and_save(
                netm, z, otypei, ctypei, output_path, output_name, suffixi,
                color_adj=color_adj, color_adj_to=conditioningi[0],)

        if eval_cnt is not None:
            print_log('Demo printed for {}'.format(eval_cnt))
        return {}

################
# basic stages #
################

class eval_stage_basic(eval_stage_base):
    @torch.no_grad()
    def sample(self, net, sampler, visual_hint, output_dim, scale, n_samples, ddim_steps, ddim_eta):
        h, w = output_dim
        vh = PIL.Image.open(visual_hint)
        c = net.clip_encode_vision(n_samples * [vh])
        uc = None
        if scale != 1.0:
            dummy = torch.zeros_like(tvtrans.ToTensor()(vh))
            uc = net.clip_encode_vision(n_samples * [dummy])

        shape = [4, h//8, w//8]
        rv = sampler.sample(
            S=ddim_steps,
            conditioning=c,
            batch_size=n_samples,
            shape=shape,
            verbose=False,
            unconditional_guidance_scale=scale,
            unconditional_conditioning=uc,
            eta=ddim_eta)
        return rv

    def __call__(self, **paras):
        cfg = cfguh().cfg
        cfgv = cfg.eval

        net = paras['net']
        eval_cnt = paras.get('eval_cnt', None)
        fix_seed = cfgv.get('fix_seed', False)

        LRANK = sync.get_rank('local')
        LWSIZE = sync.get_world_size('local')

        image_path = self.get_image_path()
        self.create_dir(image_path)
        eval_cnt = paras.get('eval_cnt', None)
        suffix='' if eval_cnt is None else '_'+str(eval_cnt)

        if isinstance(net, (torch.nn.DataParallel,
                            torch.nn.parallel.DistributedDataParallel)):
            netm = net.module
        else:
            netm = net

        with_ema = getattr(netm, 'model_ema', None) is not None
        sampler = self.sampler(netm)
        setattr(netm, 'device', LRANK) # Trick

        color_adj = cfguh().cfg.eval.get('color_adj', False)
        color_adj_keep_ratio = cfguh().cfg.eval.get('color_adj_keep_ratio', 0.5)
        color_adj_simple = cfguh().cfg.eval.get('color_adj_simple', True)

        replicate = cfgv.get('replicate', 1)
        conditioning = cfgv.conditioning * replicate
        conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE]
        seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE]

        for ci, seedi in zip(conditioning_local, seed_increment):
            if ci == 'SKIP':
                continue
            draw_filename = osp.splitext(osp.basename(ci))[0]
            if fix_seed:
                np.random.seed(cfg.env.rnd_seed + seedi)
                torch.manual_seed(cfg.env.rnd_seed + seedi + 100)
                suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100)
            else:
                suffixi = suffix

            if with_ema:
                with netm.ema_scope():
                    x, _ = self.sample(netm, sampler, ci, **cfgv.sample)
            else:
                x, _ = self.sample(netm, sampler, ci, **cfgv.sample)

            demo_image = latent2im(netm, x)
            if color_adj:
                x_adj = []
                for demoi in demo_image:
                    color_adj_f = color_adjust(ref_from=demoi, ref_to=ci)
                    xi_adj = color_adj_f(demoi, keep=color_adj_keep_ratio, simple=color_adj_simple)
                    x_adj.append(xi_adj)
                demo_image = x_adj
            self.save_images(demo_image, draw_filename, image_path, suffix=suffixi)

        if eval_cnt is not None:
            print_log('Demo printed for {}'.format(eval_cnt))
        return {}

#######################
# dual context stages #
#######################

class eval_stage_dc(eval_stage_base):
    def __init__(self):
        from ..model_zoo.ddim_dualcontext import DDIMSampler_DualContext
        self.sampler = DDIMSampler_DualContext

    @torch.no_grad()
    def sample(
            self, net, sampler, conditioning, output_dim, 
            scale, n_samples, ddim_steps, ddim_eta):
        ctype, cvalue =conditioning
        if ctype == 'prompt':
            return self.sample_text(
                net, sampler, cvalue, output_dim,
                scale, n_samples, ddim_steps, ddim_eta)
        elif ctype == 'vision':
            return self.sample_vision(
                net, sampler, cvalue, output_dim,
                scale, n_samples, ddim_steps, ddim_eta)
        else:
            raise ValueError

    @torch.no_grad()
    def sample_text(
            self, net, sampler, prompt, output_dim, 
            scale, n_samples, ddim_steps, ddim_eta):
        h, w = output_dim
        uc = None
        if scale != 1.0:
            uc = net.clip_encode_text(n_samples * [""])
        c = net.clip_encode_text(n_samples * [prompt])
        shape = [n_samples, 4, h//8, w//8]
        rv = sampler.sample_text(
            steps=ddim_steps,
            shape=shape,
            conditioning=c,
            unconditional_guidance_scale=scale,
            unconditional_conditioning=uc,
            eta=ddim_eta,
            verbose=False,)
        return rv

    @torch.no_grad()
    def sample_vision(
            self, net, sampler, visual_hint, output_dim, 
            scale, n_samples, ddim_steps, ddim_eta):
        h, w = output_dim
        if len(visual_hint.shape) == 3:
            visual_hint=visual_hint[None].repeat(n_samples, 1, 1, 1)
        else:
            raise ValueError

        c = net.clip_encode_vision(visual_hint)
        uc = None
        if scale != 1.0:
            visual_hint_blank = torch.zeros_like(visual_hint)
            uc = net.clip_encode_vision(visual_hint_blank)

        shape = [n_samples, 4, h//8, w//8]
        rv = sampler.sample_vision(
            steps=ddim_steps,
            shape=shape,
            conditioning=c,
            unconditional_guidance_scale=scale,
            unconditional_conditioning=uc,
            eta=ddim_eta,
            verbose=False,)
        return rv

    def __call__(self, **paras):
        cfg = cfguh().cfg
        cfgv = cfg.eval

        net = self.get_net(paras)
        eval_cnt = paras.get('eval_cnt', None)
        fix_seed = cfgv.get('fix_seed', False)

        LRANK = sync.get_rank('local')
        LWSIZE = sync.get_world_size('local')

        image_path = self.get_image_path()
        self.create_dir(image_path)
        suffix='' if eval_cnt is None else '_'+str(eval_cnt)

        if isinstance(net, (torch.nn.DataParallel,
                            torch.nn.parallel.DistributedDataParallel)):
            netm = net.module
        else:
            netm = net

        with_ema = getattr(netm, 'model_ema', None) is not None
        sampler = self.sampler(netm)
        setattr(netm, 'device', LRANK) # Trick

        color_adj = cfguh().cfg.eval.get('color_adj', False)
        color_adj_keep_ratio = cfguh().cfg.eval.get('color_adj_keep_ratio', 0.5)
        color_adj_simple = cfguh().cfg.eval.get('color_adj_simple', True)

        replicate = cfgv.get('replicate', 1)
        conditioning = cfgv.conditioning * replicate
        conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE]
        seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE]

        for ci, seedi in zip(conditioning_local, seed_increment):
            if ci == 'SKIP':
                continue

            if osp.isfile(ci):
                # is vision
                draw_filename = 'v2i_' + osp.splitext(osp.basename(ci))[0]
                ci = tvtrans.ToTensor()(PIL.Image.open(ci))
                ci = ci*2 - 1
                ci = ('vision', ci)
            else:
                # is prompt
                draw_filename = 't2i_' + ci.strip().replace(' ', '-')
                ci = ('prompt', ci)

            if fix_seed:
                np.random.seed(cfg.env.rnd_seed + seedi)
                torch.manual_seed(cfg.env.rnd_seed + seedi + 100)
                suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100)
            else:
                suffixi = suffix

            if with_ema:
                with netm.ema_scope():
                    x, _ = self.sample(netm, sampler, ci, **cfgv.sample)
            else:
                x, _ = self.sample(netm, sampler, ci, **cfgv.sample)

            demo_image = latent2im(netm, x)
            if color_adj and ci[0] == 'vision':
                x_adj = []
                for demoi in demo_image:
                    color_adj_f = color_adjust(ref_from=demoi, ref_to=ci[1])
                    xi_adj = color_adj_f(demoi, keep=color_adj_keep_ratio, simple=color_adj_simple)
                    x_adj.append(xi_adj)
                demo_image = x_adj
            self.save_images(demo_image, draw_filename, image_path, suffix=suffixi)

        if eval_cnt is not None:
            print_log('Demo printed for {}'.format(eval_cnt))
        return {}