File size: 20,557 Bytes
0ccacae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import torch
import torch.distributed as dist
from torchvision import transforms as tvtrans
import os
import os.path as osp
import time
import timeit
import copy
import json
import pickle
import PIL.Image
import numpy as np
from datetime import datetime
from easydict import EasyDict as edict
from collections import OrderedDict
from lib.cfg_holder import cfg_unique_holder as cfguh
from lib.data_factory import get_dataset, get_sampler, collate
from lib.model_zoo import \
get_model, get_optimizer, get_scheduler
from lib.log_service import print_log
from ..utils import train as train_base
from ..utils import eval as eval_base
from ..utils import train_stage as tsbase
from ..utils import eval_stage as esbase
from .. import sync
from .sd_default import auto_merge_imlist, latent2im, color_adjust
from .sd_default import eval as eval_base
from .sd_default import eval_stage as eval_stage_base
###############
# some helper #
###############
def atomic_save(cfg, net, opt, step, path):
if isinstance(net, (torch.nn.DataParallel,
torch.nn.parallel.DistributedDataParallel)):
netm = net.module
else:
netm = net
sd = netm.state_dict()
slimmed_sd = [(ki, vi) for ki, vi in sd.items()
if ki.find('autokl')!=0 and ki.find('optimus')!=0 and ki.find('clip')!=0]
checkpoint = {
"config" : cfg,
"state_dict" : OrderedDict(slimmed_sd),
"step" : step}
if opt is not None:
checkpoint['optimizer_states'] = opt.state_dict()
import io
import fsspec
bytesbuffer = io.BytesIO()
torch.save(checkpoint, bytesbuffer)
with fsspec.open(path, "wb") as f:
f.write(bytesbuffer.getvalue())
def load_state_dict(net, cfg):
pretrained_pth_full = cfg.get('pretrained_pth_full' , None)
pretrained_ckpt_full = cfg.get('pretrained_ckpt_full', None)
pretrained_pth = cfg.get('pretrained_pth' , None)
pretrained_ckpt = cfg.get('pretrained_ckpt' , None)
pretrained_pth_dm = cfg.get('pretrained_pth_dm' , None)
pretrained_pth_ema = cfg.get('pretrained_pth_ema' , None)
strict_sd = cfg.get('strict_sd', False)
errmsg = "Overlapped model state_dict! This is undesired behavior!"
if pretrained_pth_full is not None or pretrained_ckpt_full is not None:
assert (pretrained_pth is None) and \
(pretrained_ckpt is None) and \
(pretrained_pth_dm is None) and \
(pretrained_pth_ema is None), errmsg
if pretrained_pth_full is not None:
target_file = pretrained_pth_full
sd = torch.load(target_file, map_location='cpu')
assert pretrained_ckpt is None, errmsg
else:
target_file = pretrained_ckpt_full
sd = torch.load(target_file, map_location='cpu')['state_dict']
print_log('Load full model from [{}] strict [{}].'.format(
target_file, strict_sd))
net.load_state_dict(sd, strict=strict_sd)
if pretrained_pth is not None or pretrained_ckpt is not None:
assert (pretrained_ckpt_full is None) and \
(pretrained_pth_full is None) and \
(pretrained_pth_dm is None) and \
(pretrained_pth_ema is None), errmsg
if pretrained_pth is not None:
target_file = pretrained_pth
sd = torch.load(target_file, map_location='cpu')
assert pretrained_ckpt is None, errmsg
else:
target_file = pretrained_ckpt
sd = torch.load(target_file, map_location='cpu')['state_dict']
print_log('Load model from [{}] strict [{}].'.format(
target_file, strict_sd))
sd_extra = [(ki, vi) for ki, vi in net.state_dict().items() \
if ki.find('autokl')==0 or ki.find('optimus')==0 or ki.find('clip')==0]
sd.update(OrderedDict(sd_extra))
net.load_state_dict(sd, strict=strict_sd)
if pretrained_pth_dm is not None:
assert (pretrained_ckpt_full is None) and \
(pretrained_pth_full is None) and \
(pretrained_pth is None) and \
(pretrained_ckpt is None), errmsg
print_log('Load diffusion model from [{}] strict [{}].'.format(
pretrained_pth_dm, strict_sd))
sd = torch.load(pretrained_pth_dm, map_location='cpu')
net.model.diffusion_model.load_state_dict(sd, strict=strict_sd)
if pretrained_pth_ema is not None:
assert (pretrained_ckpt_full is None) and \
(pretrained_pth_full is None) and \
(pretrained_pth is None) and \
(pretrained_ckpt is None), errmsg
print_log('Load unet ema model from [{}] strict [{}].'.format(
pretrained_pth_ema, strict_sd))
sd = torch.load(pretrained_pth_ema, map_location='cpu')
net.model_ema.load_state_dict(sd, strict=strict_sd)
###################
# official stages #
###################
class eval(eval_base):
pass
class eval_stage(eval_stage_base):
"""
Evaluation of both prompt and vision
"""
def __init__(self):
from ..model_zoo.ddim_vd import DDIMSampler_VD
self.sampler = DDIMSampler_VD
@torch.no_grad()
def sample(
self, net, sampler, context, otype, ctype, image_output_dim, text_latent_dim,
scale, n_samples, ddim_steps, ddim_eta):
if ctype == 'prompt':
c = net.clip_encode_text(n_samples * [context])
uc = None
if scale != 1.0:
uc = net.clip_encode_text(n_samples * [""])
elif ctype == 'vision':
context = context[None].repeat(n_samples, 1, 1, 1)
c = net.clip_encode_vision(context)
uc = None
if scale != 1.0:
dummy = torch.zeros_like(context)
uc = net.clip_encode_vision(dummy)
if otype == 'image':
h, w = image_output_dim
shape = [n_samples, 4, h//8, w//8]
rv = sampler.sample(
steps=ddim_steps,
shape=shape,
conditioning=c,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
xtype=otype, ctype=ctype,
eta=ddim_eta,
verbose=False,)
elif otype == 'text':
n = text_latent_dim
shape = [n_samples, n]
rv = sampler.sample(
steps=ddim_steps,
shape=shape,
conditioning=c,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
xtype=otype, ctype=ctype,
eta=ddim_eta,
verbose=False,)
return rv
def decode_and_save(
self, netm, z, xtype, ctype, path, name, suffix,
color_adj=False, color_adj_to=None):
if xtype == 'image':
x = netm.autokl_decode(z)
name = 't2i_'+name if ctype == 'prompt' else 'v2i_'+name
if color_adj and (ctype=='vision'):
keep_ratio = cfguh().cfg.eval.get('color_adj_keep_ratio', 0.5)
simple = cfguh().cfg.eval.get('color_adj_simple', True)
x_adj = []
for xi in x:
color_adj_f = color_adjust(ref_from=(xi+1)/2, ref_to=color_adj_to)
xi_adj = color_adj_f((xi+1)/2, keep=keep_ratio, simple=simple)
x_adj.append(xi_adj)
x = x_adj
self.save_images(x, name, path, suffix=suffix)
elif xtype == 'text':
prompt_temperature = cfguh().cfg.eval.get('prompt_temperature', 1.0)
x = netm.optimus_decode(z, temperature=prompt_temperature)
name = 't2t_'+name if ctype == 'prompt' else 'v2t_'+name
prompt_merge_same_adj_word = cfguh().cfg.eval.get('prompt_merge_same_adj_word', False)
if prompt_merge_same_adj_word:
xnew = []
for xi in x:
xi_split = xi.split()
xinew = []
for idxi, wi in enumerate(xi_split):
if idxi!=0 and wi==xi_split[idxi-1]:
continue
xinew.append(wi)
xnew.append(' '.join(xinew))
x = xnew
self.save_text(x, name, path, suffix=suffix)
def save_images(self, x, name, path, suffix=''):
if isinstance(x, torch.Tensor):
single_input = len(x.shape) == 3
if single_input:
x = x[None]
x = torch.clamp((x+1.0)/2.0, min=0.0, max=1.0)
x = [tvtrans.ToPILImage()(xi) for xi in x]
xlist = [np.array(xi) for xi in x]
elif isinstance(x, list):
xlist = x
canvas = auto_merge_imlist(xlist)
image_name = '{}{}.png'.format(name, suffix)
PIL.Image.fromarray(canvas).save(osp.join(path, image_name))
def save_text(self, x, name, path, suffix=''):
file_name = '{}{}.txt'.format(name, suffix)
with open(osp.join(path, file_name) ,'w') as f:
for xi in x:
f.write(xi+'\n')
def __call__(self, **paras):
cfg = cfguh().cfg
cfgv = cfg.eval
net = self.get_net(paras)
eval_cnt = paras.get('eval_cnt', None)
fix_seed = cfgv.get('fix_seed', False)
LRANK = sync.get_rank('local')
LWSIZE = sync.get_world_size('local')
output_path = self.get_image_path()
self.create_dir(output_path)
eval_cnt = paras.get('eval_cnt', None)
suffix='' if eval_cnt is None else '_'+str(eval_cnt)
if isinstance(net, (torch.nn.DataParallel,
torch.nn.parallel.DistributedDataParallel)):
netm = net.module
else:
netm = net
with_ema = getattr(netm, 'model_ema', None) is not None
sampler = self.sampler(netm)
setattr(netm, 'device', LRANK) # Trick
color_adj = cfguh().cfg.eval.get('color_adj', False)
replicate = cfgv.get('replicate', 1)
conditioning = cfgv.conditioning * replicate
conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE]
seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE]
for conditioningi, seedi in zip(conditioning_local, seed_increment):
if conditioningi == 'SKIP':
continue
ci, otypei = conditioningi
if osp.isfile(ci):
# is vision
output_name = osp.splitext(osp.basename(ci))[0]
ci = tvtrans.ToTensor()(PIL.Image.open(ci))
ci = ci*2 - 1
ctypei = 'vision'
else:
# is prompt
output_name = ci.strip().replace(' ', '-')
ctypei = 'prompt'
if fix_seed:
np.random.seed(cfg.env.rnd_seed + seedi)
torch.manual_seed(cfg.env.rnd_seed + seedi + 100)
suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100)
else:
suffixi = suffix
if with_ema:
with netm.ema_scope():
z, _ = self.sample(netm, sampler, ci, otypei, ctypei, **cfgv.sample)
else:
z, _ = self.sample(netm, sampler, ci, otypei, ctypei, **cfgv.sample)
self.decode_and_save(
netm, z, otypei, ctypei, output_path, output_name, suffixi,
color_adj=color_adj, color_adj_to=conditioningi[0],)
if eval_cnt is not None:
print_log('Demo printed for {}'.format(eval_cnt))
return {}
################
# basic stages #
################
class eval_stage_basic(eval_stage_base):
@torch.no_grad()
def sample(self, net, sampler, visual_hint, output_dim, scale, n_samples, ddim_steps, ddim_eta):
h, w = output_dim
vh = PIL.Image.open(visual_hint)
c = net.clip_encode_vision(n_samples * [vh])
uc = None
if scale != 1.0:
dummy = torch.zeros_like(tvtrans.ToTensor()(vh))
uc = net.clip_encode_vision(n_samples * [dummy])
shape = [4, h//8, w//8]
rv = sampler.sample(
S=ddim_steps,
conditioning=c,
batch_size=n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=ddim_eta)
return rv
def __call__(self, **paras):
cfg = cfguh().cfg
cfgv = cfg.eval
net = paras['net']
eval_cnt = paras.get('eval_cnt', None)
fix_seed = cfgv.get('fix_seed', False)
LRANK = sync.get_rank('local')
LWSIZE = sync.get_world_size('local')
image_path = self.get_image_path()
self.create_dir(image_path)
eval_cnt = paras.get('eval_cnt', None)
suffix='' if eval_cnt is None else '_'+str(eval_cnt)
if isinstance(net, (torch.nn.DataParallel,
torch.nn.parallel.DistributedDataParallel)):
netm = net.module
else:
netm = net
with_ema = getattr(netm, 'model_ema', None) is not None
sampler = self.sampler(netm)
setattr(netm, 'device', LRANK) # Trick
color_adj = cfguh().cfg.eval.get('color_adj', False)
color_adj_keep_ratio = cfguh().cfg.eval.get('color_adj_keep_ratio', 0.5)
color_adj_simple = cfguh().cfg.eval.get('color_adj_simple', True)
replicate = cfgv.get('replicate', 1)
conditioning = cfgv.conditioning * replicate
conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE]
seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE]
for ci, seedi in zip(conditioning_local, seed_increment):
if ci == 'SKIP':
continue
draw_filename = osp.splitext(osp.basename(ci))[0]
if fix_seed:
np.random.seed(cfg.env.rnd_seed + seedi)
torch.manual_seed(cfg.env.rnd_seed + seedi + 100)
suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100)
else:
suffixi = suffix
if with_ema:
with netm.ema_scope():
x, _ = self.sample(netm, sampler, ci, **cfgv.sample)
else:
x, _ = self.sample(netm, sampler, ci, **cfgv.sample)
demo_image = latent2im(netm, x)
if color_adj:
x_adj = []
for demoi in demo_image:
color_adj_f = color_adjust(ref_from=demoi, ref_to=ci)
xi_adj = color_adj_f(demoi, keep=color_adj_keep_ratio, simple=color_adj_simple)
x_adj.append(xi_adj)
demo_image = x_adj
self.save_images(demo_image, draw_filename, image_path, suffix=suffixi)
if eval_cnt is not None:
print_log('Demo printed for {}'.format(eval_cnt))
return {}
#######################
# dual context stages #
#######################
class eval_stage_dc(eval_stage_base):
def __init__(self):
from ..model_zoo.ddim_dualcontext import DDIMSampler_DualContext
self.sampler = DDIMSampler_DualContext
@torch.no_grad()
def sample(
self, net, sampler, conditioning, output_dim,
scale, n_samples, ddim_steps, ddim_eta):
ctype, cvalue =conditioning
if ctype == 'prompt':
return self.sample_text(
net, sampler, cvalue, output_dim,
scale, n_samples, ddim_steps, ddim_eta)
elif ctype == 'vision':
return self.sample_vision(
net, sampler, cvalue, output_dim,
scale, n_samples, ddim_steps, ddim_eta)
else:
raise ValueError
@torch.no_grad()
def sample_text(
self, net, sampler, prompt, output_dim,
scale, n_samples, ddim_steps, ddim_eta):
h, w = output_dim
uc = None
if scale != 1.0:
uc = net.clip_encode_text(n_samples * [""])
c = net.clip_encode_text(n_samples * [prompt])
shape = [n_samples, 4, h//8, w//8]
rv = sampler.sample_text(
steps=ddim_steps,
shape=shape,
conditioning=c,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=ddim_eta,
verbose=False,)
return rv
@torch.no_grad()
def sample_vision(
self, net, sampler, visual_hint, output_dim,
scale, n_samples, ddim_steps, ddim_eta):
h, w = output_dim
if len(visual_hint.shape) == 3:
visual_hint=visual_hint[None].repeat(n_samples, 1, 1, 1)
else:
raise ValueError
c = net.clip_encode_vision(visual_hint)
uc = None
if scale != 1.0:
visual_hint_blank = torch.zeros_like(visual_hint)
uc = net.clip_encode_vision(visual_hint_blank)
shape = [n_samples, 4, h//8, w//8]
rv = sampler.sample_vision(
steps=ddim_steps,
shape=shape,
conditioning=c,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=ddim_eta,
verbose=False,)
return rv
def __call__(self, **paras):
cfg = cfguh().cfg
cfgv = cfg.eval
net = self.get_net(paras)
eval_cnt = paras.get('eval_cnt', None)
fix_seed = cfgv.get('fix_seed', False)
LRANK = sync.get_rank('local')
LWSIZE = sync.get_world_size('local')
image_path = self.get_image_path()
self.create_dir(image_path)
suffix='' if eval_cnt is None else '_'+str(eval_cnt)
if isinstance(net, (torch.nn.DataParallel,
torch.nn.parallel.DistributedDataParallel)):
netm = net.module
else:
netm = net
with_ema = getattr(netm, 'model_ema', None) is not None
sampler = self.sampler(netm)
setattr(netm, 'device', LRANK) # Trick
color_adj = cfguh().cfg.eval.get('color_adj', False)
color_adj_keep_ratio = cfguh().cfg.eval.get('color_adj_keep_ratio', 0.5)
color_adj_simple = cfguh().cfg.eval.get('color_adj_simple', True)
replicate = cfgv.get('replicate', 1)
conditioning = cfgv.conditioning * replicate
conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE]
seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE]
for ci, seedi in zip(conditioning_local, seed_increment):
if ci == 'SKIP':
continue
if osp.isfile(ci):
# is vision
draw_filename = 'v2i_' + osp.splitext(osp.basename(ci))[0]
ci = tvtrans.ToTensor()(PIL.Image.open(ci))
ci = ci*2 - 1
ci = ('vision', ci)
else:
# is prompt
draw_filename = 't2i_' + ci.strip().replace(' ', '-')
ci = ('prompt', ci)
if fix_seed:
np.random.seed(cfg.env.rnd_seed + seedi)
torch.manual_seed(cfg.env.rnd_seed + seedi + 100)
suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100)
else:
suffixi = suffix
if with_ema:
with netm.ema_scope():
x, _ = self.sample(netm, sampler, ci, **cfgv.sample)
else:
x, _ = self.sample(netm, sampler, ci, **cfgv.sample)
demo_image = latent2im(netm, x)
if color_adj and ci[0] == 'vision':
x_adj = []
for demoi in demo_image:
color_adj_f = color_adjust(ref_from=demoi, ref_to=ci[1])
xi_adj = color_adj_f(demoi, keep=color_adj_keep_ratio, simple=color_adj_simple)
x_adj.append(xi_adj)
demo_image = x_adj
self.save_images(demo_image, draw_filename, image_path, suffix=suffixi)
if eval_cnt is not None:
print_log('Demo printed for {}'.format(eval_cnt))
return {}
|