File size: 7,249 Bytes
0ccacae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import os.path as osp
import numpy as np
import numpy.random as npr
import torch
import torch.distributed as dist
import torchvision.transforms as tvtrans
import PIL.Image
PIL.Image.MAX_IMAGE_PIXELS = None
import math
import json
import copy
import pickle
from multiprocessing import shared_memory
import time
from .common import *
from ..log_service import print_log

from lib import visual_service as vis
from .. import sync

import webdataset as wds

###################################################
# this is a special ds that use webdataset mainly #
###################################################

@regdataset()
class laion2b_dummy(ds_base):
    def init_load_info(self):
        self.load_info = []

@regdataset()
class laion2b_webdataset(ds_base):
    def init_load_info(self):
        self.load_info = []

    def make_loader(self, batch_size, num_workers, train=True):
        cfg = self.cfg
        self.root_dir = cfg.root_dir

        interpolation_mode = tvtrans.InterpolationMode.BICUBIC
        if train:
            trans = [
                tvtrans.Resize(cfg.scale, interpolation=interpolation_mode),
                tvtrans.RandomCrop(cfg.scale),
                tvtrans.ToTensor(),]
        else:
            trans = [
                tvtrans.Resize(cfg.scale, interpolation=interpolation_mode),
                tvtrans.CenterCrop(cfg.scale),
                tvtrans.ToTensor(),]

        trans = tvtrans.Compose(trans)

        trans_dict = {'jpg': trans}
        postprocess = customized_postprocess

        shuffle = cfg.get('shuffle', 10000)
        shardshuffle = shuffle > 0
        node_world_size = sync.get_world_size('node')
        nodesplitter = wds.shardlists.split_by_node \
            if node_world_size==1 else wds.shardlists.single_node_only

        tars = [osp.join(self.root_dir, 'data', i) for i in os.listdir(osp.join(self.root_dir, 'data')) 
            if osp.splitext(i)[1]=='.tar']
        tars = sorted(tars)

        dset = wds.WebDataset(
            tars,
            nodesplitter=nodesplitter,
            shardshuffle=shardshuffle,
            handler=wds.warn_and_continue).repeat().shuffle(shuffle)

        print_log(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
        self.min_size = cfg.get('min_size', None)
        self.max_pwatermark = cfg.get('max_pwatermark', None)
        dset = (dset
            .select(self.filter_keys)
            .decode('pil', handler=wds.warn_and_continue)
            .select(self.filter_size)
            .map_dict(**trans_dict, handler=wds.warn_and_continue))

        if postprocess is not None:
            dset = dset.map(postprocess)
 
        dset.batched(batch_size, partial=False)
 
        loader = wds.WebLoader(
            dset, 
            batch_size=None,
            shuffle=False,
            num_workers=num_workers, )
        return loader

    def filter_size(self, x):
        try:
            valid = True
            if self.min_size is not None and self.min_size > 1:
                try:
                    valid = valid and x['json']['original_width'] >= self.min_size and \
                        x['json']['original_height'] >= self.min_size
                except Exception:
                    valid = False
            if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
                try:
                    valid = valid and  x['json']['pwatermark'] <= self.max_pwatermark
                except Exception:
                    valid = False
            return valid
        except Exception:
            return False

    def filter_keys(self, x):
        try:
            return ("jpg" in x) and ("txt" in x)
        except Exception:
            return False

    def train_dataloader(self):
        return self.make_loader(self.train)

    def val_dataloader(self):
        return self.make_loader(self.validation, train=False)

    def test_dataloader(self):
        return self.make_loader(self.test, train=False)

def customized_postprocess(element):
    return element['jpg']*2-1, element['txt'], element['__key__']

def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
    keys = set.intersection(*[set(sample.keys()) for sample in samples])
    batched = {key: [] for key in keys}

    for s in samples:
        [batched[key].append(s[key]) for key in batched]

    result = {}
    for key in batched:
        if isinstance(batched[key][0], (int, float)):
            if combine_scalars:
                result[key] = np.array(list(batched[key]))
        elif isinstance(batched[key][0], torch.Tensor):
            if combine_tensors:
                result[key] = torch.stack(list(batched[key]))
        elif isinstance(batched[key][0], np.ndarray):
            if combine_tensors:
                result[key] = np.array(list(batched[key]))
        else:
            result[key] = list(batched[key])
    return result

###################
# for sd official #
###################

def customized_postprocess_sdofficial(element):
    return {
        'jpg': element['jpg']*2-1, 
        'txt': element['txt'], }

@regdataset()
class laion2b_webdataset_sdofficial(laion2b_webdataset):
    def make_loader(self, batch_size, num_workers, train=True):
        cfg = self.cfg
        self.root_dir = cfg.root_dir

        interpolation_mode = tvtrans.InterpolationMode.BICUBIC
        if train:
            trans = [
                tvtrans.Resize(cfg.scale, interpolation=interpolation_mode),
                tvtrans.RandomCrop(cfg.scale),
                tvtrans.ToTensor(),]
        else:
            trans = [
                tvtrans.Resize(cfg.scale, interpolation=interpolation_mode),
                tvtrans.CenterCrop(cfg.scale),
                tvtrans.ToTensor(),]

        trans = tvtrans.Compose(trans)

        trans_dict = {'jpg': trans}
        postprocess = customized_postprocess_sdofficial

        shuffle = 10000
        shardshuffle = shuffle > 0
        node_world_size = 1
        nodesplitter = wds.shardlists.split_by_node \
            if node_world_size==1 else wds.shardlists.single_node_only

        tars = [osp.join(self.root_dir, 'data', i) for i in os.listdir(osp.join(self.root_dir, 'data')) 
            if osp.splitext(i)[1]=='.tar']
        tars = sorted(tars)

        dset = wds.WebDataset(
            tars,
            nodesplitter=nodesplitter,
            shardshuffle=shardshuffle,
            handler=wds.warn_and_continue).repeat().shuffle(shuffle)

        print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
        self.min_size = cfg.get('min_size', None)
        self.max_pwatermark = cfg.get('max_pwatermark', None)
        dset = (dset
            .select(self.filter_keys)
            .decode('pil', handler=wds.warn_and_continue)
            .select(self.filter_size)
            .map_dict(**trans_dict, handler=wds.warn_and_continue))

        if postprocess is not None:
            dset = dset.map(postprocess)
 
        dset.batched(batch_size, partial=False, collation_fn=dict_collation_fn)
 
        loader = wds.WebLoader(
            dset, 
            batch_size=None,
            shuffle=False,
            num_workers=num_workers, )
        return loader