File size: 5,750 Bytes
46a8d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy as np
import pickle
import os
import torch
from torch.utils.data import TensorDataset
from torchvision.datasets import ImageFolder
import torchvision.transforms as transforms
from sklearn.model_selection import train_test_split


def set_up_data(H):
    shift_loss = -127.5
    scale_loss = 1. / 127.5
    if H.dataset == 'imagenet32':
        trX, vaX, teX = imagenet32(H.data_root)
        H.image_size = 32
        H.image_channels = 3
        shift = -116.2373
        scale = 1. / 69.37404
    elif H.dataset == 'imagenet64':
        trX, vaX, teX = imagenet64(H.data_root)
        H.image_size = 64
        H.image_channels = 3
        shift = -115.92961967
        scale = 1. / 69.37404
    elif H.dataset == 'ffhq_256':
        trX, vaX, teX = ffhq256(H.data_root)
        H.image_size = 256
        H.image_channels = 3
        shift = -112.8666757481
        scale = 1. / 69.84780273
    elif H.dataset == 'ffhq_1024':
        trX, vaX, teX = ffhq1024(H.data_root)
        H.image_size = 1024
        H.image_channels = 3
        shift = -0.4387
        scale = 1.0 / 0.2743
        shift_loss = -0.5
        scale_loss = 2.0
    elif H.dataset == 'cifar10':
        (trX, _), (vaX, _), (teX, _) = cifar10(H.data_root, one_hot=False)
        H.image_size = 32
        H.image_channels = 3
        shift = -120.63838
        scale = 1. / 64.16736
    else:
        raise ValueError('unknown dataset: ', H.dataset)

    do_low_bit = H.dataset in ['ffhq_256']

    if H.test_eval:
        print('DOING TEST')
        eval_dataset = teX
    else:
        eval_dataset = vaX

    shift = torch.tensor([shift]).cuda().view(1, 1, 1, 1)
    scale = torch.tensor([scale]).cuda().view(1, 1, 1, 1)
    shift_loss = torch.tensor([shift_loss]).cuda().view(1, 1, 1, 1)
    scale_loss = torch.tensor([scale_loss]).cuda().view(1, 1, 1, 1)

    if H.dataset == 'ffhq_1024':
        train_data = ImageFolder(trX, transforms.ToTensor())
        valid_data = ImageFolder(eval_dataset, transforms.ToTensor())
        untranspose = True
    else:
        train_data = TensorDataset(torch.as_tensor(trX))
        valid_data = TensorDataset(torch.as_tensor(eval_dataset))
        untranspose = False

    def preprocess_func(x):
        nonlocal shift
        nonlocal scale
        nonlocal shift_loss
        nonlocal scale_loss
        nonlocal do_low_bit
        nonlocal untranspose
        'takes in a data example and returns the preprocessed input'
        'as well as the input processed for the loss'
        if untranspose:
            x[0] = x[0].permute(0, 2, 3, 1)
        inp = x[0].cuda(non_blocking=True).float()
        out = inp.clone()
        inp.add_(shift).mul_(scale)
        if do_low_bit:
            # 5 bits of precision
            out.mul_(1. / 8.).floor_().mul_(8.)
        out.add_(shift_loss).mul_(scale_loss)
        return inp, out

    return H, train_data, valid_data, preprocess_func


def mkdir_p(path):
    os.makedirs(path, exist_ok=True)


def flatten(outer):
    return [el for inner in outer for el in inner]


def unpickle_cifar10(file):
    fo = open(file, 'rb')
    data = pickle.load(fo, encoding='bytes')
    fo.close()
    data = dict(zip([k.decode() for k in data.keys()], data.values()))
    return data


def imagenet32(data_root):
    trX = np.load(os.path.join(data_root, 'imagenet32-train.npy'), mmap_mode='r')
    np.random.seed(42)
    tr_va_split_indices = np.random.permutation(trX.shape[0])
    train = trX[tr_va_split_indices[:-5000]]
    valid = trX[tr_va_split_indices[-5000:]]
    test = np.load(os.path.join(data_root, 'imagenet32-valid.npy'), mmap_mode='r')
    return train, valid, test


def imagenet64(data_root):
    trX = np.load(os.path.join(data_root, 'imagenet64-train.npy'), mmap_mode='r')
    np.random.seed(42)
    tr_va_split_indices = np.random.permutation(trX.shape[0])
    train = trX[tr_va_split_indices[:-5000]]
    valid = trX[tr_va_split_indices[-5000:]]
    test = np.load(os.path.join(data_root, 'imagenet64-valid.npy'), mmap_mode='r')  # this is test.
    return train, valid, test


def ffhq1024(data_root):
    # we did not significantly tune hyperparameters on ffhq-1024, and so simply evaluate on the test set
    return os.path.join(data_root, 'ffhq1024/train'), os.path.join(data_root, 'ffhq1024/valid'), os.path.join(data_root, 'ffhq1024/valid')


def ffhq256(data_root):
    trX = np.load(os.path.join(data_root, 'ffhq-256.npy'), mmap_mode='r')
    np.random.seed(5)
    tr_va_split_indices = np.random.permutation(trX.shape[0])
    train = trX[tr_va_split_indices[:-7000]]
    valid = trX[tr_va_split_indices[-7000:]]
    # we did not significantly tune hyperparameters on ffhq-256, and so simply evaluate on the test set
    return train, valid, valid


def cifar10(data_root, one_hot=True):
    tr_data = [unpickle_cifar10(os.path.join(data_root, 'cifar-10-batches-py/', 'data_batch_%d' % i)) for i in range(1, 6)]
    trX = np.vstack(data['data'] for data in tr_data)
    trY = np.asarray(flatten([data['labels'] for data in tr_data]))
    te_data = unpickle_cifar10(os.path.join(data_root, 'cifar-10-batches-py/', 'test_batch'))
    teX = np.asarray(te_data['data'])
    teY = np.asarray(te_data['labels'])
    trX = trX.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
    teX = teX.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
    trX, vaX, trY, vaY = train_test_split(trX, trY, test_size=5000, random_state=11172018)
    if one_hot:
        trY = np.eye(10, dtype=np.float32)[trY]
        vaY = np.eye(10, dtype=np.float32)[vaY]
        teY = np.eye(10, dtype=np.float32)[teY]
    else:
        trY = np.reshape(trY, [-1, 1])
        vaY = np.reshape(vaY, [-1, 1])
        teY = np.reshape(teY, [-1, 1])
    return (trX, trY), (vaX, vaY), (teX, teY)