File size: 22,925 Bytes
89f58ba c228666 89f58ba 400d1bf 89f58ba ddec3fc 763d5c9 ddec3fc 89f58ba 400d1bf 89f58ba 763d5c9 89f58ba f9358c9 400d1bf 90ace90 400d1bf f9358c9 89f58ba 400d1bf 89f58ba 3ef9d1f 400d1bf 763d5c9 89f58ba 400d1bf 89f58ba 7162b0e ddec3fc c228666 7162b0e c228666 7162b0e c228666 7162b0e c228666 a77e763 ddec3fc a77e763 ddec3fc a77e763 ddec3fc 2d80026 ddec3fc 2d80026 ddec3fc 2d80026 43324c8 400d1bf 89f58ba 400d1bf 89f58ba 400d1bf 89f58ba 7593b9a 7165fc4 90ace90 8388345 43324c8 ddec3fc 43324c8 400d1bf 89f58ba 400d1bf 89f58ba ddec3fc c228666 7162b0e c228666 2d80026 89f58ba 90ace90 89f58ba 400d1bf 89f58ba 90ace90 cea7723 400d1bf 90ace90 89f58ba 400d1bf 89f58ba cea7723 89f58ba 7593b9a 7165fc4 90ace90 7165fc4 8388345 400d1bf 90ace90 89f58ba 400d1bf 89f58ba 400d1bf 89f58ba 400d1bf cea7723 ddec3fc 43324c8 7593b9a 400d1bf 89f58ba 763d5c9 400d1bf 89f58ba 43324c8 cea7723 ddec3fc 43324c8 90ace90 cea7723 7162b0e ddec3fc c228666 7162b0e c228666 2d80026 ddec3fc 2d80026 90ace90 ddec3fc 43324c8 cea7723 90ace90 ddec3fc 90ace90 cea7723 90ace90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
---
viewer: false
tags: [uv-script, ocr, vision-language-model, document-processing, hf-jobs]
---
# OCR UV Scripts
> Part of [uv-scripts](https://huggingface.co/uv-scripts) - ready-to-run ML tools powered by UV and HuggingFace Jobs.
Ready-to-run OCR scripts that work with `uv run` and HuggingFace Jobs - no setup required!
## π Quick Start with HuggingFace Jobs
Run OCR on any dataset without needing your own GPU:
```bash
# Quick test with 10 samples
hf jobs uv run --flavor l4x1 \
--secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
your-input-dataset your-output-dataset \
--max-samples 10
```
That's it! The script will:
- β
Process first 10 images from your dataset
- β
Add OCR results as a new `markdown` column
- β
Push the results to a new dataset
- π View results at: `https://huggingface.co/datasets/[your-output-dataset]`
## π Available Scripts
### PaddleOCR-VL-1.5 (`paddleocr-vl-1.5.py`) π SOTA with 6 task modes!
Ultra-compact SOTA OCR using [PaddlePaddle/PaddleOCR-VL-1.5](https://huggingface.co/PaddlePaddle/PaddleOCR-VL-1.5) with 94.5% accuracy:
- π **SOTA Performance** - 94.5% on OmniDocBench v1.5
- π§© **Ultra-compact** - Only 0.9B parameters
- π **OCR mode** - General text extraction to markdown
- π **Table mode** - HTML table recognition
- π **Formula mode** - LaTeX mathematical notation
- π **Chart mode** - Chart and diagram analysis
- π **Spotting mode** - Text spotting with localization (higher resolution)
- π **Seal mode** - Seal and stamp recognition
- π **Multilingual** - Support for multiple languages
**Task Modes:**
- `ocr`: General text extraction (default)
- `table`: Table extraction to HTML
- `formula`: Mathematical formula to LaTeX
- `chart`: Chart and diagram analysis
- `spotting`: Text spotting with localization
- `seal`: Seal and stamp recognition
**Quick start:**
```bash
# Basic OCR mode
hf jobs uv run --flavor l4x1 \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl-1.5.py \
your-input-dataset your-output-dataset \
--max-samples 100
# Table extraction
hf jobs uv run --flavor l4x1 \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl-1.5.py \
documents tables-extracted \
--task-mode table
# Seal recognition
hf jobs uv run --flavor l4x1 \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl-1.5.py \
documents seals-extracted \
--task-mode seal
```
### PaddleOCR-VL (`paddleocr-vl.py`) π― Smallest model with task-specific modes!
Ultra-compact OCR using [PaddlePaddle/PaddleOCR-VL](https://huggingface.co/PaddlePaddle/PaddleOCR-VL) with only 0.9B parameters:
- π― **Smallest model** - Only 0.9B parameters (even smaller than LightOnOCR!)
- π **OCR mode** - General text extraction to markdown
- π **Table mode** - HTML table recognition and extraction
- π **Formula mode** - LaTeX mathematical notation
- π **Chart mode** - Structured chart and diagram analysis
- π **Multilingual** - Support for multiple languages
- β‘ **Fast initialization** - Tiny model size for quick startup
- π§ **ERNIE-4.5 based** - Different architecture from Qwen models
**Task Modes:**
- `ocr`: General text extraction (default)
- `table`: Table extraction to HTML
- `formula`: Mathematical formula to LaTeX
- `chart`: Chart and diagram analysis
**Quick start:**
```bash
# Basic OCR mode
hf jobs uv run --flavor l4x1 \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl.py \
your-input-dataset your-output-dataset \
--max-samples 100
# Table extraction
hf jobs uv run --flavor l4x1 \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl.py \
documents tables-extracted \
--task-mode table \
--batch-size 32
```
### GLM-OCR (`glm-ocr.py`) π SOTA on OmniDocBench V1.5!
Compact high-performance OCR using [zai-org/GLM-OCR](https://huggingface.co/zai-org/GLM-OCR) with 0.9B parameters:
- π **94.62% on OmniDocBench V1.5** - #1 overall ranking
- π§ **Multi-Token Prediction** - MTP loss + stable full-task RL for quality
- π **Text recognition** - Clean markdown output
- π **Formula recognition** - LaTeX mathematical notation
- π **Table recognition** - Structured table extraction
- π **Multilingual** - zh, en, fr, es, ru, de, ja, ko
- β‘ **Compact** - Only 0.9B parameters, MIT licensed
- π§ **CogViT + GLM** - Visual encoder with efficient token downsampling
**Task Modes:**
- `ocr`: Text recognition (default)
- `formula`: LaTeX formula recognition
- `table`: Table extraction
**Quick start:**
```bash
# Basic OCR
hf jobs uv run --flavor l4x1 \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \
your-input-dataset your-output-dataset \
--max-samples 100
# Formula recognition
hf jobs uv run --flavor l4x1 \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \
scientific-papers formulas-extracted \
--task formula
# Table extraction
hf jobs uv run --flavor l4x1 \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \
documents tables-extracted \
--task table
```
### LightOnOCR (`lighton-ocr.py`) β‘ Good one to test first since it's small and fast!
Fast and compact OCR using [lightonai/LightOnOCR-1B-1025](https://huggingface.co/lightonai/LightOnOCR-1B-1025):
- β‘ **Fastest**: 5.71 pages/sec on H100, ~6.25 images/sec on A100 with batch_size=4096
- π― **Compact**: Only 1B parameters - quick to download and initialize
- π **Multilingual**: 3 vocabulary sizes for different use cases
- π **LaTeX formulas**: Mathematical notation in LaTeX format
- π **Table extraction**: Markdown table format
- π **Document structure**: Preserves hierarchy and layout
- π **Production-ready**: 76.1% benchmark score, used in production
**Vocabulary sizes:**
- `151k`: Full vocabulary, all languages (default)
- `32k`: European languages, ~12% faster decoding
- `16k`: European languages, ~12% faster decoding
**Quick start:**
```bash
# Test on 100 samples with English text (32k vocab is fastest for European languages)
hf jobs uv run --flavor l4x1 \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \
your-input-dataset your-output-dataset \
--vocab-size 32k \
--batch-size 32 \
--max-samples 100
# Full production run on A100 (can handle huge batches!)
hf jobs uv run --flavor a100-large \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \
your-input-dataset your-output-dataset \
--vocab-size 32k \
--batch-size 4096 \
--temperature 0.0
```
### LightOnOCR-2 (`lighton-ocr2.py`) β‘ Fastest OCR model!
Next-generation fast OCR using [lightonai/LightOnOCR-2-1B](https://huggingface.co/lightonai/LightOnOCR-2-1B) with RLVR training:
- β‘ **7Γ faster than v1**: 42.8 pages/sec on H100 (vs 5.71 for v1)
- π― **Higher accuracy**: 83.2% on OlmOCR-Bench (+7.1% vs v1)
- π§ **RLVR trained**: Eliminates repetition loops and formatting errors
- π **Better dataset**: 2.5Γ larger training data with cleaner annotations
- π **Multilingual**: Optimized for European languages
- π **LaTeX formulas**: Mathematical notation support
- π **Table extraction**: Markdown table format
- πͺ **Production-ready**: Outperforms models 9Γ larger
**Quick start:**
```bash
# Test on 100 samples
hf jobs uv run --flavor a100-large \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr2.py \
your-input-dataset your-output-dataset \
--batch-size 32 \
--max-samples 100
# Full production run
hf jobs uv run --flavor a100-large \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr2.py \
your-input-dataset your-output-dataset \
--batch-size 32
```
### DeepSeek-OCR (`deepseek-ocr-vllm.py`)
Advanced document OCR using [deepseek-ai/DeepSeek-OCR](https://huggingface.co/deepseek-ai/DeepSeek-OCR) with visual-text compression:
- π **LaTeX equations** - Mathematical formulas in LaTeX format
- π **Tables** - Extracted as HTML/markdown
- π **Document structure** - Headers, lists, formatting preserved
- πΌοΈ **Image grounding** - Spatial layout with bounding boxes
- π **Complex layouts** - Multi-column and hierarchical structures
- π **Multilingual** - Multiple language support
- ποΈ **Resolution modes** - 5 presets for speed/quality trade-offs
- π¬ **Prompt modes** - 5 presets for different OCR tasks
- β‘ **Fast batch processing** - vLLM acceleration
**Resolution Modes:**
- `tiny` (512Γ512): Fast, 64 vision tokens
- `small` (640Γ640): Balanced, 100 vision tokens
- `base` (1024Γ1024): High quality, 256 vision tokens
- `large` (1280Γ1280): Maximum quality, 400 vision tokens
- `gundam` (dynamic): Adaptive multi-tile (default)
**Prompt Modes:**
- `document`: Convert to markdown with grounding (default)
- `image`: OCR any image with grounding
- `free`: Fast OCR without layout
- `figure`: Parse figures from documents
- `describe`: Detailed image descriptions
### RolmOCR (`rolm-ocr.py`)
Fast general-purpose OCR using [reducto/RolmOCR](https://huggingface.co/reducto/RolmOCR) based on Qwen2.5-VL-7B:
- π **Fast extraction** - Optimized for speed and efficiency
- π **Plain text output** - Clean, natural text representation
- πͺ **General-purpose** - Works well on various document types
- π₯ **Large context** - Handles up to 16K tokens
- β‘ **Batch optimized** - Efficient processing with vLLM
### Nanonets OCR (`nanonets-ocr.py`)
State-of-the-art document OCR using [nanonets/Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s) that handles:
- π **LaTeX equations** - Mathematical formulas preserved
- π **Tables** - Extracted as HTML format
- π **Document structure** - Headers, lists, formatting maintained
- πΌοΈ **Images** - Captions and descriptions included
- βοΈ **Forms** - Checkboxes rendered as β/β
### Nanonets OCR2 (`nanonets-ocr2.py`)
Next-generation Nanonets OCR using [nanonets/Nanonets-OCR2-3B](https://huggingface.co/nanonets/Nanonets-OCR2-3B) with improved accuracy:
- π― **Enhanced quality** - 3.75B parameters for superior OCR accuracy
- π **LaTeX equations** - Mathematical formulas preserved in LaTeX format
- π **Advanced tables** - Improved HTML table extraction
- π **Document structure** - Headers, lists, formatting maintained
- πΌοΈ **Smart image captions** - Intelligent descriptions and captions
- βοΈ **Forms** - Checkboxes rendered as β/β
- π **Multilingual** - Enhanced language support
- π§ **Based on Qwen2.5-VL** - Built on state-of-the-art vision-language model
### SmolDocling (`smoldocling-ocr.py`)
Ultra-compact document understanding using [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) with only 256M parameters:
- π·οΈ **DocTags format** - Efficient XML-like representation
- π» **Code blocks** - Preserves indentation and syntax
- π’ **Formulas** - Mathematical expressions with layout
- π **Tables & charts** - Structured data extraction
- π **Layout preservation** - Bounding boxes and spatial info
- β‘ **Ultra-fast** - Tiny model size for quick inference
### NuMarkdown (`numarkdown-ocr.py`)
Advanced reasoning-based OCR using [numind/NuMarkdown-8B-Thinking](https://huggingface.co/numind/NuMarkdown-8B-Thinking) that analyzes documents before converting to markdown:
- π§ **Reasoning Process** - Thinks through document layout before generation
- π **Complex Tables** - Superior table extraction and formatting
- π **Mathematical Formulas** - Accurate LaTeX/math notation preservation
- π **Multi-column Layouts** - Handles complex document structures
- β¨ **Thinking Traces** - Optional inclusion of reasoning process with `--include-thinking`
### DoTS.ocr (`dots-ocr.py`)
Compact multilingual OCR using [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) with only 1.7B parameters:
- π **100+ Languages** - Extensive multilingual support
- π **Simple OCR** - Clean text extraction (default mode)
- π **Layout Analysis** - Optional structured output with bboxes and categories
- π **Formula recognition** - LaTeX format support
- π― **Compact** - Only 1.7B parameters, efficient on smaller GPUs
- π **Flexible prompts** - Switch between OCR, layout-all, and layout-only modes
### olmOCR2 (`olmocr2-vllm.py`)
High-quality document OCR using [allenai/olmOCR-2-7B-1025-FP8](https://huggingface.co/allenai/olmOCR-2-7B-1025-FP8) optimized with GRPO reinforcement learning:
- π― **High accuracy** - 82.4 Β± 1.1 on olmOCR-Bench (84.9% on math)
- π **LaTeX equations** - Mathematical formulas in LaTeX format
- π **Table extraction** - Structured table recognition
- π **Multi-column layouts** - Complex document structures
- ποΈ **FP8 quantized** - Efficient 8B model for faster inference
- π **Degraded scans** - Works well on old/historical documents
- π **Long text extraction** - Headers, footers, and full document content
- π§© **YAML metadata** - Structured front matter (language, rotation, content type)
- π **Based on Qwen2.5-VL-7B** - Fine-tuned with reinforcement learning
## π New Features
### Multi-Model Comparison Support
All scripts now include `inference_info` tracking for comparing multiple OCR models:
```bash
# First model
uv run rolm-ocr.py my-dataset my-dataset --max-samples 100
# Second model (appends to same dataset)
uv run nanonets-ocr.py my-dataset my-dataset --max-samples 100
# View all models used
python -c "import json; from datasets import load_dataset; ds = load_dataset('my-dataset'); print(json.loads(ds[0]['inference_info']))"
```
### Random Sampling
Get representative samples with the new `--shuffle` flag:
```bash
# Random 50 samples instead of first 50
uv run rolm-ocr.py ordered-dataset output --max-samples 50 --shuffle
# Reproducible random sampling
uv run nanonets-ocr.py dataset output --max-samples 100 --shuffle --seed 42
```
### Automatic Dataset Cards
Every OCR run now generates comprehensive dataset documentation including:
- Model configuration and parameters
- Processing statistics
- Column descriptions
- Reproduction instructions
## π» Usage Examples
### Run on HuggingFace Jobs (Recommended)
No GPU? No problem! Run on HF infrastructure:
```bash
# PaddleOCR-VL - Smallest model (0.9B) with task modes
hf jobs uv run --flavor l4x1 \
--secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl.py \
your-input-dataset your-output-dataset \
--task-mode ocr \
--max-samples 100
# PaddleOCR-VL - Extract tables from documents
hf jobs uv run --flavor l4x1 \
--secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl.py \
documents tables-dataset \
--task-mode table
# PaddleOCR-VL - Formula recognition
hf jobs uv run --flavor l4x1 \
--secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl.py \
scientific-papers formulas-extracted \
--task-mode formula \
--batch-size 32
# GLM-OCR - SOTA 0.9B model (94.62% OmniDocBench)
hf jobs uv run --flavor l4x1 \
-s HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \
your-input-dataset your-output-dataset \
--batch-size 16 \
--max-samples 100
# DeepSeek-OCR - Real-world example (National Library of Scotland handbooks)
hf jobs uv run --flavor a100-large \
-s HF_TOKEN \
-e UV_TORCH_BACKEND=auto \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \
NationalLibraryOfScotland/Britain-and-UK-Handbooks-Dataset \
davanstrien/handbooks-deep-ocr \
--max-samples 100 \
--shuffle \
--resolution-mode large
# DeepSeek-OCR - Fast testing with tiny mode
hf jobs uv run --flavor l4x1 \
-s HF_TOKEN \
-e UV_TORCH_BACKEND=auto \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \
your-input-dataset your-output-dataset \
--max-samples 10 \
--resolution-mode tiny
# DeepSeek-OCR - Parse figures from scientific papers
hf jobs uv run --flavor a100-large \
-s HF_TOKEN \
-e UV_TORCH_BACKEND=auto \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \
scientific-papers figures-extracted \
--prompt-mode figure
# Basic OCR job with Nanonets
hf jobs uv run --flavor l4x1 \
--secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
your-input-dataset your-output-dataset
# DoTS.ocr - Multilingual OCR with compact 1.7B model
hf jobs uv run --flavor a100-large \
--secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \
davanstrien/ufo-ColPali \
your-username/ufo-ocr \
--batch-size 256 \
--max-samples 1000 \
--shuffle
# Real example with UFO dataset πΈ
hf jobs uv run \
--flavor a10g-large \
--secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
davanstrien/ufo-ColPali \
your-username/ufo-ocr \
--image-column image \
--max-model-len 16384 \
--batch-size 128
# Nanonets OCR2 - Next-gen quality with 3B model
hf jobs uv run \
--flavor l4x1 \
--secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr2.py \
your-input-dataset \
your-output-dataset \
--batch-size 16
# NuMarkdown with reasoning traces for complex documents
hf jobs uv run \
--flavor l4x4 \
--secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \
your-input-dataset your-output-dataset \
--max-samples 50 \
--include-thinking \
--shuffle
# olmOCR2 - High-quality OCR with YAML metadata
hf jobs uv run \
--flavor a100-large \
--secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/olmocr2-vllm.py \
your-input-dataset your-output-dataset \
--batch-size 16 \
--max-samples 100
# Private dataset with custom settings
hf jobs uv run --flavor l40sx1 \
--secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
private-input private-output \
--private \
--batch-size 32
```
### Python API
```python
from huggingface_hub import run_uv_job
job = run_uv_job(
"https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py",
args=["input-dataset", "output-dataset", "--batch-size", "16"],
flavor="l4x1"
)
```
### Run Locally (Requires GPU)
```bash
# Clone and run
git clone https://huggingface.co/datasets/uv-scripts/ocr
cd ocr
uv run nanonets-ocr.py input-dataset output-dataset
# Or run directly from URL
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
input-dataset output-dataset
# PaddleOCR-VL for task-specific OCR (smallest model!)
uv run paddleocr-vl.py documents extracted --task-mode ocr
uv run paddleocr-vl.py papers tables --task-mode table # Extract tables
uv run paddleocr-vl.py textbooks formulas --task-mode formula # LaTeX formulas
# RolmOCR for fast text extraction
uv run rolm-ocr.py documents extracted-text
uv run rolm-ocr.py images texts --shuffle --max-samples 100 # Random sample
# Nanonets OCR2 for highest quality
uv run nanonets-ocr2.py documents ocr-results
```
## π Works With
Any HuggingFace dataset containing images - documents, forms, receipts, books, handwriting.
## ποΈ Configuration Options
### Common Options (All Scripts)
| Option | Default | Description |
| -------------------------- | ------------------ | --------------------------------- |
| `--image-column` | `image` | Column containing images |
| `--batch-size` | `32`/`16`\* | Images processed together |
| `--max-model-len` | `8192`/`16384`\*\* | Max context length |
| `--max-tokens` | `4096`/`8192`\*\* | Max output tokens |
| `--gpu-memory-utilization` | `0.8` | GPU memory usage (0.0-1.0) |
| `--split` | `train` | Dataset split to process |
| `--max-samples` | None | Limit samples (for testing) |
| `--private` | False | Make output dataset private |
| `--shuffle` | False | Shuffle dataset before processing |
| `--seed` | `42` | Random seed for shuffling |
\*RolmOCR and DoTS use batch size 16
\*\*RolmOCR uses 16384/8192
### Script-Specific Options
**PaddleOCR-VL-1.5**:
- `--task-mode`: Task type - `ocr` (default), `table`, `formula`, `chart`, `spotting`, or `seal`
- `--output-column`: Override default column name (default: `paddleocr_1.5_[task_mode]`)
- SOTA 94.5% accuracy on OmniDocBench v1.5
- Uses transformers backend (single image processing for stability)
**PaddleOCR-VL**:
- `--task-mode`: Task type - `ocr` (default), `table`, `formula`, or `chart`
- `--no-smart-resize`: Disable adaptive resizing (use original image size)
- `--output-column`: Override default column name (default: `paddleocr_[task_mode]`)
- Ultra-compact 0.9B model - fastest initialization!
**GLM-OCR**:
- `--task`: Task type - `ocr` (default), `formula`, or `table`
- `--repetition-penalty`: Repetition penalty (default: 1.1, from official SDK)
- Near-greedy sampling by default (temperature=0.01, top_p=0.00001) matching official SDK
- Requires vLLM nightly + transformers>=5.1.0 (handled automatically)
**DeepSeek-OCR**:
- `--resolution-mode`: Quality level - `tiny`, `small`, `base`, `large`, or `gundam` (default)
- `--prompt-mode`: Task type - `document` (default), `image`, `free`, `figure`, or `describe`
- `--prompt`: Custom OCR prompt (overrides prompt-mode)
- `--base-size`, `--image-size`, `--crop-mode`: Override resolution mode manually
- β οΈ **Important for HF Jobs**: Add `-e UV_TORCH_BACKEND=auto` for proper PyTorch installation
**RolmOCR**:
- Output column is auto-generated from model name (e.g., `rolmocr_text`)
- Use `--output-column` to override the default name
**DoTS.ocr**:
- `--prompt-mode`: Choose `ocr` (default), `layout-all`, or `layout-only`
- `--custom-prompt`: Override with custom prompt text
- `--output-column`: Output column name (default: `markdown`)
π‘ **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 256` on A100)
|