|
|
import math |
|
|
from functools import partial |
|
|
from collections import namedtuple |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from torch.nn.modules.utils import _pair |
|
|
|
|
|
import hydra |
|
|
|
|
|
from einops import reduce, rearrange |
|
|
|
|
|
|
|
|
def pooling(x, pooling_mode='CLS', key_padding_mask=None, batch_first=True): |
|
|
if pooling_mode not in ['MEAN', 'SUM', 'CLS', 'LAST', 'FLATTEN']: |
|
|
raise NotImplementedError(f'pooling_mode must be MEAN, SUM, CLS, LAST, FLATTEN') |
|
|
if pooling_mode in ['MEAN', 'SUM']: |
|
|
if key_padding_mask is not None: |
|
|
mask = rearrange(~key_padding_mask.bool_matrix, |
|
|
'b s -> b s 1' if batch_first else 'b s -> s b 1') |
|
|
x = x.masked_fill(mask, 0) |
|
|
s = reduce(x, 'b s ... -> b ...' if batch_first else 's b ... -> b ...', 'sum') |
|
|
if pooling_mode == 'SUM': |
|
|
return s |
|
|
else: |
|
|
if key_padding_mask is None: |
|
|
return s / x.shape[1 if batch_first else 0] |
|
|
else: |
|
|
lengths = rearrange(key_padding_mask._lengths, 'b -> b 1') |
|
|
return s / lengths |
|
|
elif pooling_mode == 'CLS': |
|
|
return x[:, 0] if batch_first else x[0] |
|
|
elif pooling_mode == 'LAST': |
|
|
if key_padding_mask is None: |
|
|
return x[:, -1] if batch_first else x[-1] |
|
|
else: |
|
|
lengths = key_padding_mask._lengths |
|
|
if batch_first: |
|
|
batch_size = x.shape[0] |
|
|
return x[torch.arange(batch_size, device=x.device), lengths - 1] |
|
|
else: |
|
|
batch_size = x.shape[1] |
|
|
return x[lengths - 1, torch.arange(batch_size, device=x.device)] |
|
|
elif pooling_mode == 'FLATTEN': |
|
|
return rearrange(x, 'b ... -> b (...)' if batch_first else 's b ... -> b (s ...)') |
|
|
|
|
|
|
|
|
class ClassificationHeadLinear(nn.Module): |
|
|
"""Head for sentence-level classification tasks.""" |
|
|
|
|
|
def __init__(self, d_model, num_classes, pooling_mode='MEAN', |
|
|
batch_first=False, **kwargs): |
|
|
super().__init__() |
|
|
assert pooling_mode in ['MEAN', 'SUM', 'CLS', 'LAST', 'FLATTEN'], 'pooling_mode not supported' |
|
|
self.pooling_mode = pooling_mode |
|
|
self.batch_first = batch_first |
|
|
self.out_proj = nn.Linear(d_model, num_classes) |
|
|
|
|
|
def forward(self, hidden_states, key_padding_mask=None, **kwargs): |
|
|
""" |
|
|
hidden_states: (B, S, D) if batch_first else (S, B, D) |
|
|
""" |
|
|
hidden_states = pooling(hidden_states, pooling_mode=self.pooling_mode, |
|
|
key_padding_mask=key_padding_mask, batch_first=self.batch_first) |
|
|
hidden_states = self.out_proj(hidden_states) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
|
|
|
class ClassificationHead(nn.Module): |
|
|
"""Head for sentence-level classification tasks.""" |
|
|
|
|
|
def __init__(self, d_model, d_inner, num_classes, dropout=0.0, pooling_mode='MEAN', |
|
|
batch_first=False): |
|
|
super().__init__() |
|
|
assert pooling_mode in ['MEAN', 'SUM', 'CLS', 'LAST', 'FLATTEN'], 'pooling_mode not supported' |
|
|
self.pooling_mode = pooling_mode |
|
|
self.batch_first = batch_first |
|
|
self.dense = nn.Linear(d_model, d_inner) |
|
|
self.dropout = nn.Dropout(dropout) |
|
|
self.out_proj = nn.Linear(d_inner, num_classes) |
|
|
|
|
|
def forward(self, hidden_states, key_padding_mask=None, **kwargs): |
|
|
""" |
|
|
hidden_states: (B, S, D) if batch_first else (S, B, D) |
|
|
""" |
|
|
hidden_states = pooling(hidden_states, pooling_mode=self.pooling_mode, |
|
|
key_padding_mask=key_padding_mask, batch_first=self.batch_first) |
|
|
hidden_states = self.dropout(hidden_states) |
|
|
hidden_states = self.dense(hidden_states) |
|
|
|
|
|
hidden_states = torch.relu(hidden_states) |
|
|
hidden_states = self.dropout(hidden_states) |
|
|
hidden_states = self.out_proj(hidden_states) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class ClassificationHeadDual(nn.Module): |
|
|
"""Head for sentence-level classification tasks.""" |
|
|
|
|
|
def __init__(self, d_model, d_inner, num_classes, dropout=0.0, pooling_mode='MEAN', |
|
|
batch_first=False, interaction='NLI'): |
|
|
super().__init__() |
|
|
assert pooling_mode in ['MEAN', 'SUM', 'CLS'], 'pooling_mode not supported' |
|
|
assert interaction in [None, 'NLI'], 'interaction not supported' |
|
|
self.pooling_mode = pooling_mode |
|
|
self.batch_first = batch_first |
|
|
self.interaction = interaction |
|
|
self.dense = nn.Linear(d_model * (4 if self.interaction == 'NLI' else 2), d_inner) |
|
|
self.dropout = nn.Dropout(dropout) |
|
|
self.out_proj = nn.Linear(d_inner, num_classes) |
|
|
|
|
|
def forward(self, hidden_states1, hidden_states2, |
|
|
key_padding_mask1=None, key_padding_mask2=None, **kwargs): |
|
|
""" |
|
|
hidden_states: (B, S, D) if batch_first else (S, B, D) |
|
|
""" |
|
|
x1 = pooling(hidden_states1, pooling_mode=self.pooling_mode, |
|
|
key_padding_mask=key_padding_mask1, batch_first=self.batch_first) |
|
|
x2 = pooling(hidden_states2, pooling_mode=self.pooling_mode, |
|
|
key_padding_mask=key_padding_mask2, batch_first=self.batch_first) |
|
|
hidden_states = (torch.cat([x1, x2, x1 * x2, x1 - x2], dim=-1) if self.interaction == 'NLI' |
|
|
else torch.cat([x1, x2], dim=-1)) |
|
|
hidden_states = self.dropout(hidden_states) |
|
|
hidden_states = self.dense(hidden_states) |
|
|
|
|
|
hidden_states = torch.relu(hidden_states) |
|
|
hidden_states = self.dropout(hidden_states) |
|
|
hidden_states = self.out_proj(hidden_states) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class LMHead(nn.Module): |
|
|
|
|
|
def __init__(self, d_model, num_classes, batch_first=True, bias=True): |
|
|
super().__init__() |
|
|
self.lm_head = nn.Linear(d_model, num_classes, bias=bias) |
|
|
|
|
|
def forward(self, hidden_states, **kwargs): |
|
|
""" |
|
|
hidden_states: (B, S, D) if batch_first else (S, B, D) |
|
|
""" |
|
|
CausalLMOutput = namedtuple('CausalLMOutput', ['logits']) |
|
|
return CausalLMOutput(self.lm_head(hidden_states)) |
|
|
|
|
|
|
|
|
def sinusoidal_init_(tensor): |
|
|
""" |
|
|
tensor: (max_len, d_model) |
|
|
""" |
|
|
max_len, d_model = tensor.shape |
|
|
position = rearrange(torch.arange(0.0, max_len), 's -> s 1') |
|
|
div_term = torch.exp(-math.log(10000.0) * torch.arange(0.0, d_model, 2.0) / d_model) |
|
|
tensor[:, 0::2] = torch.sin(position * div_term) |
|
|
tensor[:, 1::2] = torch.cos(position * div_term) |
|
|
return tensor |
|
|
|
|
|
|
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
|
r"""Inject some information about the relative or absolute position of the tokens |
|
|
in the sequence. The positional encodings have the same dimension as |
|
|
the embeddings, so that the two can be summed. Here, we use sine and cosine |
|
|
functions of different frequencies. |
|
|
.. math:: |
|
|
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model)) |
|
|
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model)) |
|
|
\text{where pos is the word position and i is the embed idx) |
|
|
Args: |
|
|
d_model: the embed dim (required). |
|
|
dropout: the dropout value (default=0.1). |
|
|
max_len: the max. length of the incoming sequence (default=5000). |
|
|
Examples: |
|
|
>>> pos_encoder = PositionalEncoding(d_model) |
|
|
""" |
|
|
|
|
|
def __init__(self, d_model, dropout=0.1, max_len=5000, batch_first=False, initializer=None): |
|
|
super().__init__() |
|
|
self.batch_first = batch_first |
|
|
self.dropout = nn.Dropout(p=dropout) |
|
|
pe = torch.empty(max_len, d_model) |
|
|
if initializer is None: |
|
|
sinusoidal_init_(pe) |
|
|
pe = rearrange(pe, 's d -> 1 s d' if self.batch_first else 's d -> s 1 d') |
|
|
self.register_buffer('pe', pe) |
|
|
else: |
|
|
hydra.utils.call(initializer, pe) |
|
|
pe = rearrange(pe, 's d -> 1 s d' if self.batch_first else 's d -> s 1 d') |
|
|
self.pe = nn.Parameter(pe) |
|
|
|
|
|
def forward(self, x): |
|
|
r"""Inputs of forward function |
|
|
Args: |
|
|
x: the sequence fed to the positional encoder model (required). |
|
|
Shape: |
|
|
x: [sequence length, batch size, embed dim] if not batch_first else [B, S, D] |
|
|
output: [sequence length, batch size, embed dim] if not batch_first else [B, S, D] |
|
|
Examples: |
|
|
>>> output = pos_encoder(x) |
|
|
""" |
|
|
x = x + (self.pe[:, :x.size(1)] if self.batch_first else self.pe[:x.size(0)]) |
|
|
return self.dropout(x) |
|
|
|
|
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
|
""" MLP as used in Vision Transformer, MLP-Mixer and related networks |
|
|
""" |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, |
|
|
act_fn=None, drop=0., device=None, dtype=None): |
|
|
"""TD [2021-10-27] act_fn takes precedence over act_layer if set. |
|
|
This is to support Pytorch 1.10 Transformer interface that construct the activation |
|
|
*function*, not the activation *layer*. |
|
|
""" |
|
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
drop_probs = _pair(drop) |
|
|
self.fc1 = nn.Linear(in_features, hidden_features, **factory_kwargs) |
|
|
self.act = act_layer() if act_fn is None else act_fn |
|
|
self.drop1 = nn.Dropout(drop_probs[0]) |
|
|
self.fc2 = nn.Linear(hidden_features, out_features, **factory_kwargs) |
|
|
self.drop2 = nn.Dropout(drop_probs[1]) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.fc1(x) |
|
|
x = self.act(x) |
|
|
x = self.drop1(x) |
|
|
x = self.fc2(x) |
|
|
x = self.drop2(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class MlpBig(nn.Module): |
|
|
""" MLP as used in Vision Transformer, MLP-Mixer and related networks |
|
|
""" |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, |
|
|
act_fn=None, drop=0., device=None, dtype=None): |
|
|
"""Copied from Mlp above. If num_layers > 2, add more Mlp layers, doubling each time. |
|
|
""" |
|
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
cur_hidden_features = hidden_features |
|
|
layers = [] |
|
|
for _ in range(4): |
|
|
layers.append(nn.Linear(in_features, cur_hidden_features, **factory_kwargs)) |
|
|
layers.append(act_layer()) |
|
|
layers.append(nn.Dropout(drop)) |
|
|
in_features = cur_hidden_features |
|
|
cur_hidden_features *= 2 |
|
|
layers.append(nn.Linear(in_features, out_features, **factory_kwargs)) |
|
|
layers.append(nn.Dropout(drop)) |
|
|
self.fwd = nn.Sequential(*layers) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.fwd(x) |
|
|
|
|
|
class GluMlp(nn.Module): |
|
|
""" MLP w/ GLU style gating |
|
|
See: https://arxiv.org/abs/1612.08083, https://arxiv.org/abs/2002.05202 |
|
|
""" |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.Sigmoid, drop=0.): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
assert hidden_features % 2 == 0 |
|
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
|
self.act = act_layer() |
|
|
self.fc2 = nn.Linear(hidden_features // 2, out_features) |
|
|
self.drop = nn.Dropout(drop) |
|
|
|
|
|
def init_weights(self): |
|
|
|
|
|
fc1_mid = self.fc1.bias.shape[0] // 2 |
|
|
nn.init.ones_(self.fc1.bias[fc1_mid:]) |
|
|
nn.init.normal_(self.fc1.weight[fc1_mid:], std=1e-6) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.fc1(x) |
|
|
x, gates = x.chunk(2, dim=-1) |
|
|
x = x * self.act(gates) |
|
|
x = self.drop(x) |
|
|
x = self.fc2(x) |
|
|
x = self.drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class GatedMlp(nn.Module): |
|
|
""" MLP as used in gMLP |
|
|
""" |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, |
|
|
gate_layer=None, drop=0.): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
|
self.act = act_layer() |
|
|
if gate_layer is not None: |
|
|
assert hidden_features % 2 == 0 |
|
|
self.gate = gate_layer(hidden_features) |
|
|
hidden_features = hidden_features // 2 |
|
|
else: |
|
|
self.gate = nn.Identity() |
|
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
|
self.drop = nn.Dropout(drop) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.fc1(x) |
|
|
x = self.act(x) |
|
|
x = self.drop(x) |
|
|
x = self.gate(x) |
|
|
x = self.fc2(x) |
|
|
x = self.drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class ConvMlp(nn.Module): |
|
|
""" MLP using 1x1 convs that keeps spatial dims |
|
|
""" |
|
|
def __init__( |
|
|
self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU, norm_layer=None, drop=0.): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=True) |
|
|
self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity() |
|
|
self.act = act_layer() |
|
|
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=True) |
|
|
self.drop = nn.Dropout(drop) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.fc1(x) |
|
|
x = self.norm(x) |
|
|
x = self.act(x) |
|
|
x = self.drop(x) |
|
|
x = self.fc2(x) |
|
|
return x |
|
|
|
|
|
|