|
|
|
|
|
import pytorch_lightning as pl |
|
|
from pytorch_lightning import Callback |
|
|
from pytorch_lightning.utilities import rank_zero_only |
|
|
|
|
|
import torch |
|
|
from torch.autograd import grad |
|
|
|
|
|
class CausalityMonitor(Callback): |
|
|
r"""Monitor causality of a model by tracking gradient leakage forward in time. |
|
|
In a fully causal model, dy[k]du[s] ~= 0 for all k < s. |
|
|
|
|
|
Args: |
|
|
seq_len (int): Length of the sequence to monitor. |
|
|
input_dim (int): Dimension of the input to monitor. If 0, the callback assumes |
|
|
the task to be language modeling, and skips the embedding layer. If > 0, |
|
|
input_dim is interpreted as the input channel dimension, i.e. D with |
|
|
dummy input of dimension [B, L, D]. |
|
|
|
|
|
Notes: |
|
|
This callback assumes that `pl_module.model` has a `net` or `s4seq` attribute, |
|
|
indicating the primary model to monitor. For LMs, `net` or `s4seq` should |
|
|
be after the embedding layer. |
|
|
""" |
|
|
|
|
|
def __init__(self, seq_len: int = 10, input_dim: int = 0): |
|
|
super().__init__() |
|
|
self.seq_len = seq_len |
|
|
self.input_dim = input_dim |
|
|
|
|
|
@rank_zero_only |
|
|
def on_train_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: |
|
|
model = pl_module.model |
|
|
|
|
|
with torch.enable_grad(): |
|
|
if self.input_dim == 0: |
|
|
|
|
|
|
|
|
input_dim = model.d_model |
|
|
x = torch.randn((2, self.seq_len, input_dim), \ |
|
|
requires_grad=True).to(pl_module.device) |
|
|
|
|
|
if hasattr(model, 'net'): |
|
|
y = model.net(x) |
|
|
else: |
|
|
y = model.s4seq(x) |
|
|
else: |
|
|
x = torch.randn(1, self.seq_len, self.input_dim, \ |
|
|
requires_grad=True).to(pl_module.device) |
|
|
y = model(x) |
|
|
|
|
|
stats = {} |
|
|
for i in range(self.seq_len): |
|
|
|
|
|
g = grad(y[0,0,i].mean(), x, retain_graph=True, allow_unused=True)[0] |
|
|
g = g[0,i+1:,:].abs().mean() |
|
|
stats[f'stats/causality_{i}'] = g.item() |
|
|
|
|
|
if trainer.loggers is not None: |
|
|
for logger in trainer.loggers: |
|
|
logger.log_metrics(stats, step=trainer.global_step) |
|
|
|