Datasets:
ZhouChuYue
commited on
Commit
·
b448841
1
Parent(s):
3559ea7
Update README: align benchmark names and categories with paper
Browse files- README.md +4 -4
- README_ZH.md +3 -3
README.md
CHANGED
|
@@ -162,10 +162,10 @@ ds = load_dataset("openbmb/UltraData-Math", "UltraData-Math-L3-Conversation-Synt
|
|
| 162 |
|
| 163 |
We evaluated data quality using the **Decay Verification** method: continuing pre-training of a **MiniCPM-1.2B** base model (pre-trained on 1.3T tokens with **MiniCPM3-4B** tokenizer) with **~100B tokens** (30% target data + 70% general data). We used [OpenCompass](https://github.com/open-compass/opencompass) as our evaluation framework. Evaluation benchmarks include:
|
| 164 |
|
| 165 |
-
- **
|
| 166 |
-
- **
|
| 167 |
-
- **
|
| 168 |
-
- **
|
| 169 |
|
| 170 |
### Effectiveness of L0 Parsing Strategy
|
| 171 |
|
|
|
|
| 162 |
|
| 163 |
We evaluated data quality using the **Decay Verification** method: continuing pre-training of a **MiniCPM-1.2B** base model (pre-trained on 1.3T tokens with **MiniCPM3-4B** tokenizer) with **~100B tokens** (30% target data + 70% general data). We used [OpenCompass](https://github.com/open-compass/opencompass) as our evaluation framework. Evaluation benchmarks include:
|
| 164 |
|
| 165 |
+
- **General English:** MMLU, ARC-E, ARC-C, BigBench Hard (BBH), CommonSenseQA, HellaSwag, OpenbookQA, PIQA, SIQA, Winogrande
|
| 166 |
+
- **General Chinese:** C-Eval, CMMLU
|
| 167 |
+
- **Math Reasoning:** MATH500, GSM8K, Math-Bench, R-Bench-Math
|
| 168 |
+
- **Code Reasoning:** MBPP, HumanEval
|
| 169 |
|
| 170 |
### Effectiveness of L0 Parsing Strategy
|
| 171 |
|
README_ZH.md
CHANGED
|
@@ -123,10 +123,10 @@ ds = load_dataset("openbmb/UltraData-Math", "UltraData-Math-L3-Conversation-Synt
|
|
| 123 |
|
| 124 |
我们使用 **衰减验证(Decay Verification)** 方法评估数据质量:在 **MiniCPM-1.2B** 基座模型(使用 **MiniCPM3-4B** 分词器,预训练 1.3T tokens)上继续训练 **~100B tokens**(30% 目标数据 + 70% 通用数据)。我们使用 [OpenCompass](https://github.com/open-compass/opencompass) 作为评估框架。评估基准包括:
|
| 125 |
|
|
|
|
|
|
|
| 126 |
- **数学推理:** MATH500、GSM8K、Math-Bench、R-Bench-Math
|
| 127 |
-
-
|
| 128 |
-
- **英文:** MMLU、ARC-E、ARC-C、BBH、CSQA、HellaSwag、OBQA、PIQA、SIQA、WinoGrande
|
| 129 |
-
- **中文:** CMMLU、C-Eval
|
| 130 |
|
| 131 |
### L0 解析策略有效性
|
| 132 |
|
|
|
|
| 123 |
|
| 124 |
我们使用 **衰减验证(Decay Verification)** 方法评估数据质量:在 **MiniCPM-1.2B** 基座模型(使用 **MiniCPM3-4B** 分词器,预训练 1.3T tokens)上继续训练 **~100B tokens**(30% 目标数据 + 70% 通用数据)。我们使用 [OpenCompass](https://github.com/open-compass/opencompass) 作为评估框架。评估基准包括:
|
| 125 |
|
| 126 |
+
- **通用英文:** MMLU、ARC-E、ARC-C、BigBench Hard (BBH)、CommonSenseQA、HellaSwag、OpenbookQA、PIQA、SIQA、Winogrande
|
| 127 |
+
- **通用中文:** C-Eval、CMMLU
|
| 128 |
- **数学推理:** MATH500、GSM8K、Math-Bench、R-Bench-Math
|
| 129 |
+
- **代码推理:** MBPP、HumanEval
|
|
|
|
|
|
|
| 130 |
|
| 131 |
### L0 解析策略有效性
|
| 132 |
|