--- annotations_creators: - derived language: - eng - fra license: other multilinguality: multilingual source_datasets: - McGill-NLP/statcan-dialogue-dataset-retrieval task_categories: - text-retrieval task_ids: - conversational - utterance-retrieval dataset_info: - config_name: english-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: dev num_bytes: 38758739 num_examples: 5907 - name: test num_bytes: 38758739 num_examples: 5907 download_size: 18253448 dataset_size: 77517478 - config_name: english-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: dev num_bytes: 24362 num_examples: 799 - name: test num_bytes: 26970 num_examples: 870 download_size: 16359 dataset_size: 51332 - config_name: english-queries features: - name: _id dtype: string - name: text list: - name: content dtype: string - name: role dtype: string splits: - name: dev num_bytes: 351289 num_examples: 543 - name: test num_bytes: 403675 num_examples: 553 download_size: 313644 dataset_size: 754964 - config_name: french-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: dev num_bytes: 42530544 num_examples: 5907 - name: test num_bytes: 42530544 num_examples: 5907 download_size: 20041468 dataset_size: 85061088 - config_name: french-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: dev num_bytes: 6089 num_examples: 201 - name: test num_bytes: 4371 num_examples: 141 download_size: 5938 dataset_size: 10460 - config_name: french-queries features: - name: _id dtype: string - name: text list: - name: content dtype: string - name: role dtype: string splits: - name: dev num_bytes: 84889 num_examples: 122 - name: test num_bytes: 68323 num_examples: 108 download_size: 67281 dataset_size: 153212 configs: - config_name: english-corpus data_files: - split: dev path: english-corpus/dev-* - split: test path: english-corpus/test-* - config_name: english-qrels data_files: - split: dev path: english-qrels/dev-* - split: test path: english-qrels/test-* - config_name: english-queries data_files: - split: dev path: english-queries/dev-* - split: test path: english-queries/test-* - config_name: french-corpus data_files: - split: dev path: french-corpus/dev-* - split: test path: french-corpus/test-* - config_name: french-qrels data_files: - split: dev path: french-qrels/dev-* - split: test path: french-qrels/test-* - config_name: french-queries data_files: - split: dev path: french-queries/dev-* - split: test path: french-queries/test-* tags: - mteb - text ---
A Dataset for Retrieving Data Tables through Conversations with Genuine Intents, available in English and French. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Government, Web, Written | | Reference | https://mcgill-nlp.github.io/statcan-dialogue-dataset/ | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_task("StatcanDialogueDatasetRetrieval") evaluator = mteb.MTEB([task]) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{lu-etal-2023-statcan, address = {Dubrovnik, Croatia}, author = {Lu, Xing Han and Reddy, Siva and de Vries, Harm}, booktitle = {Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics}, month = may, pages = {2799--2829}, publisher = {Association for Computational Linguistics}, title = {The {S}tat{C}an Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents}, url = {https://arxiv.org/abs/2304.01412}, year = {2023}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics