import json from transformers import AutoTokenizer from typing import Any import numpy as np def convert_data_to_id(tokenizer: AutoTokenizer, data: Any): input_ids = tokenizer.encode(data) ids = input_ids ids = np.array(ids, dtype=np.int32) return ids def get_tokenizer(tokenizer_path): tokenizer = AutoTokenizer.from_pretrained( tokenizer_path, use_fast=not False, trust_remote_code=False ) return tokenizer #config source_file = "../redstone_v4_23_json/mix_splits/mixed_redstone_part_20.jsonl" out_file = "256k_docs_for_test_qwen.jsonl" tokenizer_path = "../Qwen2.5-1.5B" min_len = 256*1024 retri_num = 1000 tokenizer = get_tokenizer(tokenizer_path) idx = 0 succ_cnt = 0 out_f = open(out_file,'w') with open(source_file) as f: for line in f: idx += 1 if idx % 10000 == 0: print('Cur idx - ', idx) line = json.loads(line) cur_texts = [] if 'text' in line: temp = line['text'] elif 'raw_content_lines' in line: temp = "\n".join(line['raw_content_lines']) else: print("error") exit() try: token_id = convert_data_to_id(tokenizer, temp) except UnicodeDecodeError: print('Error line - encoding: ', idx) if len(token_id) > min_len: temp_dic = {'text': temp} out_f.write(json.dumps(temp_dic) +"\n") succ_cnt += 1 if succ_cnt % 10==0: print("succ_cnt:",succ_cnt) if succ_cnt==1000: break out_f.close() print(f"retrieve {succ_cnt} docs longer than {min_len} from {idx} docs.")