partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
test
Sections.get_sections_with_students_in_course
Return list of sections including students for the passed course ID.
uw_canvas/sections.py
def get_sections_with_students_in_course(self, course_id, params={}): """ Return list of sections including students for the passed course ID. """ include = params.get("include", []) if "students" not in include: include.append("students") params["include"] = include return self.get_sections_in_course(course_id, params)
def get_sections_with_students_in_course(self, course_id, params={}): """ Return list of sections including students for the passed course ID. """ include = params.get("include", []) if "students" not in include: include.append("students") params["include"] = include return self.get_sections_in_course(course_id, params)
[ "Return", "list", "of", "sections", "including", "students", "for", "the", "passed", "course", "ID", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/sections.py#L46-L55
[ "def", "get_sections_with_students_in_course", "(", "self", ",", "course_id", ",", "params", "=", "{", "}", ")", ":", "include", "=", "params", ".", "get", "(", "\"include\"", ",", "[", "]", ")", "if", "\"students\"", "not", "in", "include", ":", "include", ".", "append", "(", "\"students\"", ")", "params", "[", "\"include\"", "]", "=", "include", "return", "self", ".", "get_sections_in_course", "(", "course_id", ",", "params", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Sections.get_sections_with_students_in_course_by_sis_id
Return list of sections including students for the passed sis ID.
uw_canvas/sections.py
def get_sections_with_students_in_course_by_sis_id(self, sis_course_id, params={}): """ Return list of sections including students for the passed sis ID. """ return self.get_sections_with_students_in_course( self._sis_id(sis_course_id, sis_field="course"), params)
def get_sections_with_students_in_course_by_sis_id(self, sis_course_id, params={}): """ Return list of sections including students for the passed sis ID. """ return self.get_sections_with_students_in_course( self._sis_id(sis_course_id, sis_field="course"), params)
[ "Return", "list", "of", "sections", "including", "students", "for", "the", "passed", "sis", "ID", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/sections.py#L57-L63
[ "def", "get_sections_with_students_in_course_by_sis_id", "(", "self", ",", "sis_course_id", ",", "params", "=", "{", "}", ")", ":", "return", "self", ".", "get_sections_with_students_in_course", "(", "self", ".", "_sis_id", "(", "sis_course_id", ",", "sis_field", "=", "\"course\"", ")", ",", "params", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Sections.create_section
Create a canvas section in the given course id. https://canvas.instructure.com/doc/api/sections.html#method.sections.create
uw_canvas/sections.py
def create_section(self, course_id, name, sis_section_id): """ Create a canvas section in the given course id. https://canvas.instructure.com/doc/api/sections.html#method.sections.create """ url = COURSES_API.format(course_id) + "/sections" body = {"course_section": {"name": name, "sis_section_id": sis_section_id}} return CanvasSection(data=self._post_resource(url, body))
def create_section(self, course_id, name, sis_section_id): """ Create a canvas section in the given course id. https://canvas.instructure.com/doc/api/sections.html#method.sections.create """ url = COURSES_API.format(course_id) + "/sections" body = {"course_section": {"name": name, "sis_section_id": sis_section_id}} return CanvasSection(data=self._post_resource(url, body))
[ "Create", "a", "canvas", "section", "in", "the", "given", "course", "id", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/sections.py#L65-L75
[ "def", "create_section", "(", "self", ",", "course_id", ",", "name", ",", "sis_section_id", ")", ":", "url", "=", "COURSES_API", ".", "format", "(", "course_id", ")", "+", "\"/sections\"", "body", "=", "{", "\"course_section\"", ":", "{", "\"name\"", ":", "name", ",", "\"sis_section_id\"", ":", "sis_section_id", "}", "}", "return", "CanvasSection", "(", "data", "=", "self", ".", "_post_resource", "(", "url", ",", "body", ")", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Sections.update_section
Update a canvas section with the given section id. https://canvas.instructure.com/doc/api/sections.html#method.sections.update
uw_canvas/sections.py
def update_section(self, section_id, name, sis_section_id): """ Update a canvas section with the given section id. https://canvas.instructure.com/doc/api/sections.html#method.sections.update """ url = SECTIONS_API.format(section_id) body = {"course_section": {}} if name: body["course_section"]["name"] = name if sis_section_id: body["course_section"]["sis_section_id"] = sis_section_id return CanvasSection(data=self._put_resource(url, body))
def update_section(self, section_id, name, sis_section_id): """ Update a canvas section with the given section id. https://canvas.instructure.com/doc/api/sections.html#method.sections.update """ url = SECTIONS_API.format(section_id) body = {"course_section": {}} if name: body["course_section"]["name"] = name if sis_section_id: body["course_section"]["sis_section_id"] = sis_section_id return CanvasSection(data=self._put_resource(url, body))
[ "Update", "a", "canvas", "section", "with", "the", "given", "section", "id", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/sections.py#L77-L92
[ "def", "update_section", "(", "self", ",", "section_id", ",", "name", ",", "sis_section_id", ")", ":", "url", "=", "SECTIONS_API", ".", "format", "(", "section_id", ")", "body", "=", "{", "\"course_section\"", ":", "{", "}", "}", "if", "name", ":", "body", "[", "\"course_section\"", "]", "[", "\"name\"", "]", "=", "name", "if", "sis_section_id", ":", "body", "[", "\"course_section\"", "]", "[", "\"sis_section_id\"", "]", "=", "sis_section_id", "return", "CanvasSection", "(", "data", "=", "self", ".", "_put_resource", "(", "url", ",", "body", ")", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Quizzes.get_quizzes
List quizzes for a given course https://canvas.instructure.com/doc/api/quizzes.html#method.quizzes_api.index
uw_canvas/quizzes.py
def get_quizzes(self, course_id): """ List quizzes for a given course https://canvas.instructure.com/doc/api/quizzes.html#method.quizzes_api.index """ url = QUIZZES_API.format(course_id) data = self._get_resource(url) quizzes = [] for datum in data: quizzes.append(Quiz(data=datum)) return quizzes
def get_quizzes(self, course_id): """ List quizzes for a given course https://canvas.instructure.com/doc/api/quizzes.html#method.quizzes_api.index """ url = QUIZZES_API.format(course_id) data = self._get_resource(url) quizzes = [] for datum in data: quizzes.append(Quiz(data=datum)) return quizzes
[ "List", "quizzes", "for", "a", "given", "course" ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/quizzes.py#L17-L28
[ "def", "get_quizzes", "(", "self", ",", "course_id", ")", ":", "url", "=", "QUIZZES_API", ".", "format", "(", "course_id", ")", "data", "=", "self", ".", "_get_resource", "(", "url", ")", "quizzes", "=", "[", "]", "for", "datum", "in", "data", ":", "quizzes", ".", "append", "(", "Quiz", "(", "data", "=", "datum", ")", ")", "return", "quizzes" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Accounts.get_account
Return account resource for given canvas account id. https://canvas.instructure.com/doc/api/accounts.html#method.accounts.show
uw_canvas/accounts.py
def get_account(self, account_id): """ Return account resource for given canvas account id. https://canvas.instructure.com/doc/api/accounts.html#method.accounts.show """ url = ACCOUNTS_API.format(account_id) return CanvasAccount(data=self._get_resource(url))
def get_account(self, account_id): """ Return account resource for given canvas account id. https://canvas.instructure.com/doc/api/accounts.html#method.accounts.show """ url = ACCOUNTS_API.format(account_id) return CanvasAccount(data=self._get_resource(url))
[ "Return", "account", "resource", "for", "given", "canvas", "account", "id", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/accounts.py#L8-L15
[ "def", "get_account", "(", "self", ",", "account_id", ")", ":", "url", "=", "ACCOUNTS_API", ".", "format", "(", "account_id", ")", "return", "CanvasAccount", "(", "data", "=", "self", ".", "_get_resource", "(", "url", ")", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Accounts.get_sub_accounts
Return list of subaccounts within the account with the passed canvas id. https://canvas.instructure.com/doc/api/accounts.html#method.accounts.sub_accounts
uw_canvas/accounts.py
def get_sub_accounts(self, account_id, params={}): """ Return list of subaccounts within the account with the passed canvas id. https://canvas.instructure.com/doc/api/accounts.html#method.accounts.sub_accounts """ url = ACCOUNTS_API.format(account_id) + "/sub_accounts" accounts = [] for datum in self._get_paged_resource(url, params=params): accounts.append(CanvasAccount(data=datum)) return accounts
def get_sub_accounts(self, account_id, params={}): """ Return list of subaccounts within the account with the passed canvas id. https://canvas.instructure.com/doc/api/accounts.html#method.accounts.sub_accounts """ url = ACCOUNTS_API.format(account_id) + "/sub_accounts" accounts = [] for datum in self._get_paged_resource(url, params=params): accounts.append(CanvasAccount(data=datum)) return accounts
[ "Return", "list", "of", "subaccounts", "within", "the", "account", "with", "the", "passed", "canvas", "id", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/accounts.py#L23-L36
[ "def", "get_sub_accounts", "(", "self", ",", "account_id", ",", "params", "=", "{", "}", ")", ":", "url", "=", "ACCOUNTS_API", ".", "format", "(", "account_id", ")", "+", "\"/sub_accounts\"", "accounts", "=", "[", "]", "for", "datum", "in", "self", ".", "_get_paged_resource", "(", "url", ",", "params", "=", "params", ")", ":", "accounts", ".", "append", "(", "CanvasAccount", "(", "data", "=", "datum", ")", ")", "return", "accounts" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Accounts.update_account
Update the passed account. Returns the updated account. https://canvas.instructure.com/doc/api/accounts.html#method.accounts.update
uw_canvas/accounts.py
def update_account(self, account): """ Update the passed account. Returns the updated account. https://canvas.instructure.com/doc/api/accounts.html#method.accounts.update """ url = ACCOUNTS_API.format(account.account_id) body = {"account": {"name": account.name}} return CanvasAccount(data=self._put_resource(url, body))
def update_account(self, account): """ Update the passed account. Returns the updated account. https://canvas.instructure.com/doc/api/accounts.html#method.accounts.update """ url = ACCOUNTS_API.format(account.account_id) body = {"account": {"name": account.name}} return CanvasAccount(data=self._put_resource(url, body))
[ "Update", "the", "passed", "account", ".", "Returns", "the", "updated", "account", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/accounts.py#L60-L69
[ "def", "update_account", "(", "self", ",", "account", ")", ":", "url", "=", "ACCOUNTS_API", ".", "format", "(", "account", ".", "account_id", ")", "body", "=", "{", "\"account\"", ":", "{", "\"name\"", ":", "account", ".", "name", "}", "}", "return", "CanvasAccount", "(", "data", "=", "self", ".", "_put_resource", "(", "url", ",", "body", ")", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Accounts.update_sis_id
Updates the SIS ID for the account identified by the passed account ID. https://canvas.instructure.com/doc/api/accounts.html#method.accounts.update
uw_canvas/accounts.py
def update_sis_id(self, account_id, sis_account_id): """ Updates the SIS ID for the account identified by the passed account ID. https://canvas.instructure.com/doc/api/accounts.html#method.accounts.update """ if account_id == self._canvas_account_id: raise Exception("SIS ID cannot be updated for the root account") url = ACCOUNTS_API.format(account_id) body = {"account": {"sis_account_id": sis_account_id}} return CanvasAccount(data=self._put_resource(url, body))
def update_sis_id(self, account_id, sis_account_id): """ Updates the SIS ID for the account identified by the passed account ID. https://canvas.instructure.com/doc/api/accounts.html#method.accounts.update """ if account_id == self._canvas_account_id: raise Exception("SIS ID cannot be updated for the root account") url = ACCOUNTS_API.format(account_id) body = {"account": {"sis_account_id": sis_account_id}} return CanvasAccount(data=self._put_resource(url, body))
[ "Updates", "the", "SIS", "ID", "for", "the", "account", "identified", "by", "the", "passed", "account", "ID", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/accounts.py#L71-L83
[ "def", "update_sis_id", "(", "self", ",", "account_id", ",", "sis_account_id", ")", ":", "if", "account_id", "==", "self", ".", "_canvas_account_id", ":", "raise", "Exception", "(", "\"SIS ID cannot be updated for the root account\"", ")", "url", "=", "ACCOUNTS_API", ".", "format", "(", "account_id", ")", "body", "=", "{", "\"account\"", ":", "{", "\"sis_account_id\"", ":", "sis_account_id", "}", "}", "return", "CanvasAccount", "(", "data", "=", "self", ".", "_put_resource", "(", "url", ",", "body", ")", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Accounts.get_auth_settings
Return the authentication settings for the passed account_id. https://canvas.instructure.com/doc/api/authentication_providers.html#method.account_authorization_configs.show_sso_settings
uw_canvas/accounts.py
def get_auth_settings(self, account_id): """ Return the authentication settings for the passed account_id. https://canvas.instructure.com/doc/api/authentication_providers.html#method.account_authorization_configs.show_sso_settings """ url = ACCOUNTS_API.format(account_id) + "/sso_settings" return CanvasSSOSettings(data=self._get_resource(url))
def get_auth_settings(self, account_id): """ Return the authentication settings for the passed account_id. https://canvas.instructure.com/doc/api/authentication_providers.html#method.account_authorization_configs.show_sso_settings """ url = ACCOUNTS_API.format(account_id) + "/sso_settings" return CanvasSSOSettings(data=self._get_resource(url))
[ "Return", "the", "authentication", "settings", "for", "the", "passed", "account_id", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/accounts.py#L85-L92
[ "def", "get_auth_settings", "(", "self", ",", "account_id", ")", ":", "url", "=", "ACCOUNTS_API", ".", "format", "(", "account_id", ")", "+", "\"/sso_settings\"", "return", "CanvasSSOSettings", "(", "data", "=", "self", ".", "_get_resource", "(", "url", ")", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Accounts.update_auth_settings
Update the authentication settings for the passed account_id. https://canvas.instructure.com/doc/api/authentication_providers.html#method.account_authorization_configs.update_sso_settings
uw_canvas/accounts.py
def update_auth_settings(self, account_id, auth_settings): """ Update the authentication settings for the passed account_id. https://canvas.instructure.com/doc/api/authentication_providers.html#method.account_authorization_configs.update_sso_settings """ url = ACCOUNTS_API.format(account_id) + "/sso_settings" data = self._put_resource(url, auth_settings.json_data()) return CanvasSSOSettings(data=data)
def update_auth_settings(self, account_id, auth_settings): """ Update the authentication settings for the passed account_id. https://canvas.instructure.com/doc/api/authentication_providers.html#method.account_authorization_configs.update_sso_settings """ url = ACCOUNTS_API.format(account_id) + "/sso_settings" data = self._put_resource(url, auth_settings.json_data()) return CanvasSSOSettings(data=data)
[ "Update", "the", "authentication", "settings", "for", "the", "passed", "account_id", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/accounts.py#L94-L102
[ "def", "update_auth_settings", "(", "self", ",", "account_id", ",", "auth_settings", ")", ":", "url", "=", "ACCOUNTS_API", ".", "format", "(", "account_id", ")", "+", "\"/sso_settings\"", "data", "=", "self", ".", "_put_resource", "(", "url", ",", "auth_settings", ".", "json_data", "(", ")", ")", "return", "CanvasSSOSettings", "(", "data", "=", "data", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
settlement_schmertmann
Calculates the settlement of a shallow foundation (Schmertmann, 19XX). :param sp: Soil Profile object :param fd: Foundation object :param load: :param youngs_modulus_soil: The Young's modulus of the soil. :param kwargs: :return: float, the settlement.
geofound/settlement.py
def settlement_schmertmann(sp, fd, load, youngs_modulus_soil, **kwargs): """ Calculates the settlement of a shallow foundation (Schmertmann, 19XX). :param sp: Soil Profile object :param fd: Foundation object :param load: :param youngs_modulus_soil: The Young's modulus of the soil. :param kwargs: :return: float, the settlement. """ length = float(fd.length) breadth = float(fd.width) depth = float(fd.depth) load = float(load) sp.gwl = kwargs.get("gwl", sp.gwl) sp.unit_sat_weight = kwargs.get("unit_sat_weight", sp.unit_sat_weight) verbose = kwargs.get("verbose", 0) years = kwargs.get("years", 0) q = load / (length * breadth) sigma_v0_eff = (sp.unit_dry_weight * min(depth, sp.gwl) + (sp.unit_sat_weight - 9.8) * max([0, depth - sp.gwl])) delta_q = q - sigma_v0_eff # EMBEDMENT FACTOR c_1 = max(1 - 0.5 * (sigma_v0_eff / delta_q), 0.5) # CREEP FACTOR if years == 0: c_2 = 1.0 else: c_2 = 1.0 + 0.2 * np.log10(years / 0.1) # SHAPE FACTOR long = max(length, breadth) short = min(length, breadth) c_3 = max(1.03 - 0.03 * (long / short), 0.73) # Peak settlement index if long / short > 10: zp = short + depth z_top = 0.2 z_bottom = 4 * short + depth else: z_top = 0.1 zp = 0.5 * short + depth z_bottom = 2 * short + depth sigma_vp_eff = (sp.unit_dry_weight * min(zp, sp.gwl) + (sp.unit_sat_weight - 9.8) * max([0, zp - sp.gwl])) i_zp = 0.5 + 0.1 * (delta_q / sigma_vp_eff) ** 0.5 i_z_top = (i_zp + z_top) / 2 i_z_bottom = i_zp / 2 settlement = (c_1 * c_2 * c_3 * delta_q * (i_z_top * (zp - depth) + i_z_bottom * (z_bottom - zp)) / youngs_modulus_soil) if verbose: log("delta_q:", delta_q) log("c_1:", c_1) log("c_2:", c_2) log("c_3:", c_3) log("zp:", zp) log("sigma_vp_eff:", sigma_vp_eff) log("i_zp:", i_zp) log("i_z_top:", i_z_top) log("i_z_bottom:", i_z_bottom) log("settlement:", settlement) return settlement
def settlement_schmertmann(sp, fd, load, youngs_modulus_soil, **kwargs): """ Calculates the settlement of a shallow foundation (Schmertmann, 19XX). :param sp: Soil Profile object :param fd: Foundation object :param load: :param youngs_modulus_soil: The Young's modulus of the soil. :param kwargs: :return: float, the settlement. """ length = float(fd.length) breadth = float(fd.width) depth = float(fd.depth) load = float(load) sp.gwl = kwargs.get("gwl", sp.gwl) sp.unit_sat_weight = kwargs.get("unit_sat_weight", sp.unit_sat_weight) verbose = kwargs.get("verbose", 0) years = kwargs.get("years", 0) q = load / (length * breadth) sigma_v0_eff = (sp.unit_dry_weight * min(depth, sp.gwl) + (sp.unit_sat_weight - 9.8) * max([0, depth - sp.gwl])) delta_q = q - sigma_v0_eff # EMBEDMENT FACTOR c_1 = max(1 - 0.5 * (sigma_v0_eff / delta_q), 0.5) # CREEP FACTOR if years == 0: c_2 = 1.0 else: c_2 = 1.0 + 0.2 * np.log10(years / 0.1) # SHAPE FACTOR long = max(length, breadth) short = min(length, breadth) c_3 = max(1.03 - 0.03 * (long / short), 0.73) # Peak settlement index if long / short > 10: zp = short + depth z_top = 0.2 z_bottom = 4 * short + depth else: z_top = 0.1 zp = 0.5 * short + depth z_bottom = 2 * short + depth sigma_vp_eff = (sp.unit_dry_weight * min(zp, sp.gwl) + (sp.unit_sat_weight - 9.8) * max([0, zp - sp.gwl])) i_zp = 0.5 + 0.1 * (delta_q / sigma_vp_eff) ** 0.5 i_z_top = (i_zp + z_top) / 2 i_z_bottom = i_zp / 2 settlement = (c_1 * c_2 * c_3 * delta_q * (i_z_top * (zp - depth) + i_z_bottom * (z_bottom - zp)) / youngs_modulus_soil) if verbose: log("delta_q:", delta_q) log("c_1:", c_1) log("c_2:", c_2) log("c_3:", c_3) log("zp:", zp) log("sigma_vp_eff:", sigma_vp_eff) log("i_zp:", i_zp) log("i_z_top:", i_z_top) log("i_z_bottom:", i_z_bottom) log("settlement:", settlement) return settlement
[ "Calculates", "the", "settlement", "of", "a", "shallow", "foundation", "(", "Schmertmann", "19XX", ")", "." ]
eng-tools/geofound
python
https://github.com/eng-tools/geofound/blob/6b1b097d5db998907bdcb5b4798fb4629674c770/geofound/settlement.py#L6-L74
[ "def", "settlement_schmertmann", "(", "sp", ",", "fd", ",", "load", ",", "youngs_modulus_soil", ",", "*", "*", "kwargs", ")", ":", "length", "=", "float", "(", "fd", ".", "length", ")", "breadth", "=", "float", "(", "fd", ".", "width", ")", "depth", "=", "float", "(", "fd", ".", "depth", ")", "load", "=", "float", "(", "load", ")", "sp", ".", "gwl", "=", "kwargs", ".", "get", "(", "\"gwl\"", ",", "sp", ".", "gwl", ")", "sp", ".", "unit_sat_weight", "=", "kwargs", ".", "get", "(", "\"unit_sat_weight\"", ",", "sp", ".", "unit_sat_weight", ")", "verbose", "=", "kwargs", ".", "get", "(", "\"verbose\"", ",", "0", ")", "years", "=", "kwargs", ".", "get", "(", "\"years\"", ",", "0", ")", "q", "=", "load", "/", "(", "length", "*", "breadth", ")", "sigma_v0_eff", "=", "(", "sp", ".", "unit_dry_weight", "*", "min", "(", "depth", ",", "sp", ".", "gwl", ")", "+", "(", "sp", ".", "unit_sat_weight", "-", "9.8", ")", "*", "max", "(", "[", "0", ",", "depth", "-", "sp", ".", "gwl", "]", ")", ")", "delta_q", "=", "q", "-", "sigma_v0_eff", "# EMBEDMENT FACTOR", "c_1", "=", "max", "(", "1", "-", "0.5", "*", "(", "sigma_v0_eff", "/", "delta_q", ")", ",", "0.5", ")", "# CREEP FACTOR", "if", "years", "==", "0", ":", "c_2", "=", "1.0", "else", ":", "c_2", "=", "1.0", "+", "0.2", "*", "np", ".", "log10", "(", "years", "/", "0.1", ")", "# SHAPE FACTOR", "long", "=", "max", "(", "length", ",", "breadth", ")", "short", "=", "min", "(", "length", ",", "breadth", ")", "c_3", "=", "max", "(", "1.03", "-", "0.03", "*", "(", "long", "/", "short", ")", ",", "0.73", ")", "# Peak settlement index", "if", "long", "/", "short", ">", "10", ":", "zp", "=", "short", "+", "depth", "z_top", "=", "0.2", "z_bottom", "=", "4", "*", "short", "+", "depth", "else", ":", "z_top", "=", "0.1", "zp", "=", "0.5", "*", "short", "+", "depth", "z_bottom", "=", "2", "*", "short", "+", "depth", "sigma_vp_eff", "=", "(", "sp", ".", "unit_dry_weight", "*", "min", "(", "zp", ",", "sp", ".", "gwl", ")", "+", "(", "sp", ".", "unit_sat_weight", "-", "9.8", ")", "*", "max", "(", "[", "0", ",", "zp", "-", "sp", ".", "gwl", "]", ")", ")", "i_zp", "=", "0.5", "+", "0.1", "*", "(", "delta_q", "/", "sigma_vp_eff", ")", "**", "0.5", "i_z_top", "=", "(", "i_zp", "+", "z_top", ")", "/", "2", "i_z_bottom", "=", "i_zp", "/", "2", "settlement", "=", "(", "c_1", "*", "c_2", "*", "c_3", "*", "delta_q", "*", "(", "i_z_top", "*", "(", "zp", "-", "depth", ")", "+", "i_z_bottom", "*", "(", "z_bottom", "-", "zp", ")", ")", "/", "youngs_modulus_soil", ")", "if", "verbose", ":", "log", "(", "\"delta_q:\"", ",", "delta_q", ")", "log", "(", "\"c_1:\"", ",", "c_1", ")", "log", "(", "\"c_2:\"", ",", "c_2", ")", "log", "(", "\"c_3:\"", ",", "c_3", ")", "log", "(", "\"zp:\"", ",", "zp", ")", "log", "(", "\"sigma_vp_eff:\"", ",", "sigma_vp_eff", ")", "log", "(", "\"i_zp:\"", ",", "i_zp", ")", "log", "(", "\"i_z_top:\"", ",", "i_z_top", ")", "log", "(", "\"i_z_bottom:\"", ",", "i_z_bottom", ")", "log", "(", "\"settlement:\"", ",", "settlement", ")", "return", "settlement" ]
6b1b097d5db998907bdcb5b4798fb4629674c770
test
Terms.get_all_terms
Return all of the terms in the account. https://canvas.instructure.com/doc/api/enrollment_terms.html#method.terms_api.index
uw_canvas/terms.py
def get_all_terms(self): """ Return all of the terms in the account. https://canvas.instructure.com/doc/api/enrollment_terms.html#method.terms_api.index """ if not self._canvas_account_id: raise MissingAccountID() params = {"workflow_state": 'all', 'per_page': 500} url = ACCOUNTS_API.format(self._canvas_account_id) + "/terms" data_key = 'enrollment_terms' terms = [] response = self._get_paged_resource(url, params, data_key) for data in response[data_key]: terms.append(CanvasTerm(data=data)) return terms
def get_all_terms(self): """ Return all of the terms in the account. https://canvas.instructure.com/doc/api/enrollment_terms.html#method.terms_api.index """ if not self._canvas_account_id: raise MissingAccountID() params = {"workflow_state": 'all', 'per_page': 500} url = ACCOUNTS_API.format(self._canvas_account_id) + "/terms" data_key = 'enrollment_terms' terms = [] response = self._get_paged_resource(url, params, data_key) for data in response[data_key]: terms.append(CanvasTerm(data=data)) return terms
[ "Return", "all", "of", "the", "terms", "in", "the", "account", ".", "https", ":", "//", "canvas", ".", "instructure", ".", "com", "/", "doc", "/", "api", "/", "enrollment_terms", ".", "html#method", ".", "terms_api", ".", "index" ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/terms.py#L7-L23
[ "def", "get_all_terms", "(", "self", ")", ":", "if", "not", "self", ".", "_canvas_account_id", ":", "raise", "MissingAccountID", "(", ")", "params", "=", "{", "\"workflow_state\"", ":", "'all'", ",", "'per_page'", ":", "500", "}", "url", "=", "ACCOUNTS_API", ".", "format", "(", "self", ".", "_canvas_account_id", ")", "+", "\"/terms\"", "data_key", "=", "'enrollment_terms'", "terms", "=", "[", "]", "response", "=", "self", ".", "_get_paged_resource", "(", "url", ",", "params", ",", "data_key", ")", "for", "data", "in", "response", "[", "data_key", "]", ":", "terms", ".", "append", "(", "CanvasTerm", "(", "data", "=", "data", ")", ")", "return", "terms" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Terms.get_term_by_sis_id
Return a term resource for the passed SIS ID.
uw_canvas/terms.py
def get_term_by_sis_id(self, sis_term_id): """ Return a term resource for the passed SIS ID. """ for term in self.get_all_terms(): if term.sis_term_id == sis_term_id: return term
def get_term_by_sis_id(self, sis_term_id): """ Return a term resource for the passed SIS ID. """ for term in self.get_all_terms(): if term.sis_term_id == sis_term_id: return term
[ "Return", "a", "term", "resource", "for", "the", "passed", "SIS", "ID", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/terms.py#L25-L31
[ "def", "get_term_by_sis_id", "(", "self", ",", "sis_term_id", ")", ":", "for", "term", "in", "self", ".", "get_all_terms", "(", ")", ":", "if", "term", ".", "sis_term_id", "==", "sis_term_id", ":", "return", "term" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Terms.update_term_overrides
Update an existing enrollment term for the passed SIS ID. https://canvas.instructure.com/doc/api/enrollment_terms.html#method.terms.update
uw_canvas/terms.py
def update_term_overrides(self, sis_term_id, overrides={}): """ Update an existing enrollment term for the passed SIS ID. https://canvas.instructure.com/doc/api/enrollment_terms.html#method.terms.update """ if not self._canvas_account_id: raise MissingAccountID() url = ACCOUNTS_API.format( self._canvas_account_id) + "/terms/{}".format( self._sis_id(sis_term_id, sis_field='term')) body = {'enrollment_term': {'overrides': overrides}} return CanvasTerm(data=self._put_resource(url, body))
def update_term_overrides(self, sis_term_id, overrides={}): """ Update an existing enrollment term for the passed SIS ID. https://canvas.instructure.com/doc/api/enrollment_terms.html#method.terms.update """ if not self._canvas_account_id: raise MissingAccountID() url = ACCOUNTS_API.format( self._canvas_account_id) + "/terms/{}".format( self._sis_id(sis_term_id, sis_field='term')) body = {'enrollment_term': {'overrides': overrides}} return CanvasTerm(data=self._put_resource(url, body))
[ "Update", "an", "existing", "enrollment", "term", "for", "the", "passed", "SIS", "ID", ".", "https", ":", "//", "canvas", ".", "instructure", ".", "com", "/", "doc", "/", "api", "/", "enrollment_terms", ".", "html#method", ".", "terms", ".", "update" ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/terms.py#L33-L46
[ "def", "update_term_overrides", "(", "self", ",", "sis_term_id", ",", "overrides", "=", "{", "}", ")", ":", "if", "not", "self", ".", "_canvas_account_id", ":", "raise", "MissingAccountID", "(", ")", "url", "=", "ACCOUNTS_API", ".", "format", "(", "self", ".", "_canvas_account_id", ")", "+", "\"/terms/{}\"", ".", "format", "(", "self", ".", "_sis_id", "(", "sis_term_id", ",", "sis_field", "=", "'term'", ")", ")", "body", "=", "{", "'enrollment_term'", ":", "{", "'overrides'", ":", "overrides", "}", "}", "return", "CanvasTerm", "(", "data", "=", "self", ".", "_put_resource", "(", "url", ",", "body", ")", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
log
Produces console output. :param out_str: Output string :param o2: Additional output string :param o3: Additional output string :param o4: Additional output string :return: None
geofound/output.py
def log(out_str, o2="", o3="", o4=""): """ Produces console output. :param out_str: Output string :param o2: Additional output string :param o3: Additional output string :param o4: Additional output string :return: None """ print(out_str, o2, o3, o4)
def log(out_str, o2="", o3="", o4=""): """ Produces console output. :param out_str: Output string :param o2: Additional output string :param o3: Additional output string :param o4: Additional output string :return: None """ print(out_str, o2, o3, o4)
[ "Produces", "console", "output", ".", ":", "param", "out_str", ":", "Output", "string", ":", "param", "o2", ":", "Additional", "output", "string", ":", "param", "o3", ":", "Additional", "output", "string", ":", "param", "o4", ":", "Additional", "output", "string", ":", "return", ":", "None" ]
eng-tools/geofound
python
https://github.com/eng-tools/geofound/blob/6b1b097d5db998907bdcb5b4798fb4629674c770/geofound/output.py#L3-L12
[ "def", "log", "(", "out_str", ",", "o2", "=", "\"\"", ",", "o3", "=", "\"\"", ",", "o4", "=", "\"\"", ")", ":", "print", "(", "out_str", ",", "o2", ",", "o3", ",", "o4", ")" ]
6b1b097d5db998907bdcb5b4798fb4629674c770
test
SISImport.import_str
Imports a CSV string. https://canvas.instructure.com/doc/api/sis_imports.html#method.sis_imports_api.create
uw_canvas/sis_import.py
def import_str(self, csv, params={}): """ Imports a CSV string. https://canvas.instructure.com/doc/api/sis_imports.html#method.sis_imports_api.create """ if not self._canvas_account_id: raise MissingAccountID() params["import_type"] = SISImportModel.CSV_IMPORT_TYPE url = SIS_IMPORTS_API.format( self._canvas_account_id) + ".json{}".format(self._params(params)) headers = {"Content-Type": "text/csv"} return SISImportModel(data=self._post_resource(url, headers, csv))
def import_str(self, csv, params={}): """ Imports a CSV string. https://canvas.instructure.com/doc/api/sis_imports.html#method.sis_imports_api.create """ if not self._canvas_account_id: raise MissingAccountID() params["import_type"] = SISImportModel.CSV_IMPORT_TYPE url = SIS_IMPORTS_API.format( self._canvas_account_id) + ".json{}".format(self._params(params)) headers = {"Content-Type": "text/csv"} return SISImportModel(data=self._post_resource(url, headers, csv))
[ "Imports", "a", "CSV", "string", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/sis_import.py#L18-L32
[ "def", "import_str", "(", "self", ",", "csv", ",", "params", "=", "{", "}", ")", ":", "if", "not", "self", ".", "_canvas_account_id", ":", "raise", "MissingAccountID", "(", ")", "params", "[", "\"import_type\"", "]", "=", "SISImportModel", ".", "CSV_IMPORT_TYPE", "url", "=", "SIS_IMPORTS_API", ".", "format", "(", "self", ".", "_canvas_account_id", ")", "+", "\".json{}\"", ".", "format", "(", "self", ".", "_params", "(", "params", ")", ")", "headers", "=", "{", "\"Content-Type\"", ":", "\"text/csv\"", "}", "return", "SISImportModel", "(", "data", "=", "self", ".", "_post_resource", "(", "url", ",", "headers", ",", "csv", ")", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
SISImport.import_dir
Imports a directory of CSV files. https://canvas.instructure.com/doc/api/sis_imports.html#method.sis_imports_api.create
uw_canvas/sis_import.py
def import_dir(self, dir_path, params={}): """ Imports a directory of CSV files. https://canvas.instructure.com/doc/api/sis_imports.html#method.sis_imports_api.create """ if not self._canvas_account_id: raise MissingAccountID() body = self._build_archive(dir_path) params["import_type"] = SISImportModel.CSV_IMPORT_TYPE url = SIS_IMPORTS_API.format( self._canvas_account_id) + ".json{}".format(self._params(params)) headers = {"Content-Type": "application/zip"} return SISImportModel(data=self._post_resource(url, headers, body))
def import_dir(self, dir_path, params={}): """ Imports a directory of CSV files. https://canvas.instructure.com/doc/api/sis_imports.html#method.sis_imports_api.create """ if not self._canvas_account_id: raise MissingAccountID() body = self._build_archive(dir_path) params["import_type"] = SISImportModel.CSV_IMPORT_TYPE url = SIS_IMPORTS_API.format( self._canvas_account_id) + ".json{}".format(self._params(params)) headers = {"Content-Type": "application/zip"} return SISImportModel(data=self._post_resource(url, headers, body))
[ "Imports", "a", "directory", "of", "CSV", "files", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/sis_import.py#L34-L49
[ "def", "import_dir", "(", "self", ",", "dir_path", ",", "params", "=", "{", "}", ")", ":", "if", "not", "self", ".", "_canvas_account_id", ":", "raise", "MissingAccountID", "(", ")", "body", "=", "self", ".", "_build_archive", "(", "dir_path", ")", "params", "[", "\"import_type\"", "]", "=", "SISImportModel", ".", "CSV_IMPORT_TYPE", "url", "=", "SIS_IMPORTS_API", ".", "format", "(", "self", ".", "_canvas_account_id", ")", "+", "\".json{}\"", ".", "format", "(", "self", ".", "_params", "(", "params", ")", ")", "headers", "=", "{", "\"Content-Type\"", ":", "\"application/zip\"", "}", "return", "SISImportModel", "(", "data", "=", "self", ".", "_post_resource", "(", "url", ",", "headers", ",", "body", ")", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
SISImport.get_import_status
Get the status of an already created SIS import. https://canvas.instructure.com/doc/api/sis_imports.html#method.sis_imports_api.show
uw_canvas/sis_import.py
def get_import_status(self, sis_import): """ Get the status of an already created SIS import. https://canvas.instructure.com/doc/api/sis_imports.html#method.sis_imports_api.show """ if not self._canvas_account_id: raise MissingAccountID() url = SIS_IMPORTS_API.format( self._canvas_account_id) + "/{}.json".format(sis_import.import_id) return SISImportModel(data=self._get_resource(url))
def get_import_status(self, sis_import): """ Get the status of an already created SIS import. https://canvas.instructure.com/doc/api/sis_imports.html#method.sis_imports_api.show """ if not self._canvas_account_id: raise MissingAccountID() url = SIS_IMPORTS_API.format( self._canvas_account_id) + "/{}.json".format(sis_import.import_id) return SISImportModel(data=self._get_resource(url))
[ "Get", "the", "status", "of", "an", "already", "created", "SIS", "import", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/sis_import.py#L51-L63
[ "def", "get_import_status", "(", "self", ",", "sis_import", ")", ":", "if", "not", "self", ".", "_canvas_account_id", ":", "raise", "MissingAccountID", "(", ")", "url", "=", "SIS_IMPORTS_API", ".", "format", "(", "self", ".", "_canvas_account_id", ")", "+", "\"/{}.json\"", ".", "format", "(", "sis_import", ".", "import_id", ")", "return", "SISImportModel", "(", "data", "=", "self", ".", "_get_resource", "(", "url", ")", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
SISImport._build_archive
Creates a zip archive from files in path.
uw_canvas/sis_import.py
def _build_archive(self, dir_path): """ Creates a zip archive from files in path. """ zip_path = os.path.join(dir_path, "import.zip") archive = zipfile.ZipFile(zip_path, "w") for filename in CSV_FILES: filepath = os.path.join(dir_path, filename) if os.path.exists(filepath): archive.write(filepath, filename, zipfile.ZIP_DEFLATED) archive.close() with open(zip_path, "rb") as f: body = f.read() return body
def _build_archive(self, dir_path): """ Creates a zip archive from files in path. """ zip_path = os.path.join(dir_path, "import.zip") archive = zipfile.ZipFile(zip_path, "w") for filename in CSV_FILES: filepath = os.path.join(dir_path, filename) if os.path.exists(filepath): archive.write(filepath, filename, zipfile.ZIP_DEFLATED) archive.close() with open(zip_path, "rb") as f: body = f.read() return body
[ "Creates", "a", "zip", "archive", "from", "files", "in", "path", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/sis_import.py#L75-L93
[ "def", "_build_archive", "(", "self", ",", "dir_path", ")", ":", "zip_path", "=", "os", ".", "path", ".", "join", "(", "dir_path", ",", "\"import.zip\"", ")", "archive", "=", "zipfile", ".", "ZipFile", "(", "zip_path", ",", "\"w\"", ")", "for", "filename", "in", "CSV_FILES", ":", "filepath", "=", "os", ".", "path", ".", "join", "(", "dir_path", ",", "filename", ")", "if", "os", ".", "path", ".", "exists", "(", "filepath", ")", ":", "archive", ".", "write", "(", "filepath", ",", "filename", ",", "zipfile", ".", "ZIP_DEFLATED", ")", "archive", ".", "close", "(", ")", "with", "open", "(", "zip_path", ",", "\"rb\"", ")", "as", "f", ":", "body", "=", "f", ".", "read", "(", ")", "return", "body" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Assignments.get_assignments
List assignments for a given course https://canvas.instructure.com/doc/api/assignments.html#method.assignments_api.index
uw_canvas/assignments.py
def get_assignments(self, course_id): """ List assignments for a given course https://canvas.instructure.com/doc/api/assignments.html#method.assignments_api.index """ url = ASSIGNMENTS_API.format(course_id) data = self._get_resource(url) assignments = [] for datum in data: assignments.append(Assignment(data=datum)) return assignments
def get_assignments(self, course_id): """ List assignments for a given course https://canvas.instructure.com/doc/api/assignments.html#method.assignments_api.index """ url = ASSIGNMENTS_API.format(course_id) data = self._get_resource(url) assignments = [] for datum in data: assignments.append(Assignment(data=datum)) return assignments
[ "List", "assignments", "for", "a", "given", "course" ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/assignments.py#L9-L20
[ "def", "get_assignments", "(", "self", ",", "course_id", ")", ":", "url", "=", "ASSIGNMENTS_API", ".", "format", "(", "course_id", ")", "data", "=", "self", ".", "_get_resource", "(", "url", ")", "assignments", "=", "[", "]", "for", "datum", "in", "data", ":", "assignments", ".", "append", "(", "Assignment", "(", "data", "=", "datum", ")", ")", "return", "assignments" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Assignments.update_assignment
Modify an existing assignment. https://canvas.instructure.com/doc/api/assignments.html#method.assignments_api.update
uw_canvas/assignments.py
def update_assignment(self, assignment): """ Modify an existing assignment. https://canvas.instructure.com/doc/api/assignments.html#method.assignments_api.update """ url = ASSIGNMENTS_API.format(assignment.course_id) + "/{}".format( assignment.assignment_id) data = self._put_resource(url, assignment.json_data()) return Assignment(data=data)
def update_assignment(self, assignment): """ Modify an existing assignment. https://canvas.instructure.com/doc/api/assignments.html#method.assignments_api.update """ url = ASSIGNMENTS_API.format(assignment.course_id) + "/{}".format( assignment.assignment_id) data = self._put_resource(url, assignment.json_data()) return Assignment(data=data)
[ "Modify", "an", "existing", "assignment", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/assignments.py#L30-L40
[ "def", "update_assignment", "(", "self", ",", "assignment", ")", ":", "url", "=", "ASSIGNMENTS_API", ".", "format", "(", "assignment", ".", "course_id", ")", "+", "\"/{}\"", ".", "format", "(", "assignment", ".", "assignment_id", ")", "data", "=", "self", ".", "_put_resource", "(", "url", ",", "assignment", ".", "json_data", "(", ")", ")", "return", "Assignment", "(", "data", "=", "data", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Reports.get_available_reports
Returns the list of reports for the canvas account id. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.available_reports
uw_canvas/reports.py
def get_available_reports(self, account_id): """ Returns the list of reports for the canvas account id. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.available_reports """ url = ACCOUNTS_API.format(account_id) + "/reports" report_types = [] for datum in self._get_resource(url): report_types.append(ReportType(data=datum, account_id=account_id)) return report_types
def get_available_reports(self, account_id): """ Returns the list of reports for the canvas account id. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.available_reports """ url = ACCOUNTS_API.format(account_id) + "/reports" report_types = [] for datum in self._get_resource(url): report_types.append(ReportType(data=datum, account_id=account_id)) return report_types
[ "Returns", "the", "list", "of", "reports", "for", "the", "canvas", "account", "id", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/reports.py#L23-L34
[ "def", "get_available_reports", "(", "self", ",", "account_id", ")", ":", "url", "=", "ACCOUNTS_API", ".", "format", "(", "account_id", ")", "+", "\"/reports\"", "report_types", "=", "[", "]", "for", "datum", "in", "self", ".", "_get_resource", "(", "url", ")", ":", "report_types", ".", "append", "(", "ReportType", "(", "data", "=", "datum", ",", "account_id", "=", "account_id", ")", ")", "return", "report_types" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Reports.get_reports_by_type
Shows all reports of the passed report_type that have been run for the canvas account id. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.index
uw_canvas/reports.py
def get_reports_by_type(self, account_id, report_type): """ Shows all reports of the passed report_type that have been run for the canvas account id. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.index """ url = ACCOUNTS_API.format(account_id) + "/reports/{}".format( report_type) reports = [] for datum in self._get_resource(url): datum["account_id"] = account_id reports.append(Report(data=datum)) return reports
def get_reports_by_type(self, account_id, report_type): """ Shows all reports of the passed report_type that have been run for the canvas account id. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.index """ url = ACCOUNTS_API.format(account_id) + "/reports/{}".format( report_type) reports = [] for datum in self._get_resource(url): datum["account_id"] = account_id reports.append(Report(data=datum)) return reports
[ "Shows", "all", "reports", "of", "the", "passed", "report_type", "that", "have", "been", "run", "for", "the", "canvas", "account", "id", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/reports.py#L36-L51
[ "def", "get_reports_by_type", "(", "self", ",", "account_id", ",", "report_type", ")", ":", "url", "=", "ACCOUNTS_API", ".", "format", "(", "account_id", ")", "+", "\"/reports/{}\"", ".", "format", "(", "report_type", ")", "reports", "=", "[", "]", "for", "datum", "in", "self", ".", "_get_resource", "(", "url", ")", ":", "datum", "[", "\"account_id\"", "]", "=", "account_id", "reports", ".", "append", "(", "Report", "(", "data", "=", "datum", ")", ")", "return", "reports" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Reports.create_report
Generates a report instance for the canvas account id. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.create
uw_canvas/reports.py
def create_report(self, report_type, account_id, term_id=None, params={}): """ Generates a report instance for the canvas account id. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.create """ if term_id is not None: params["enrollment_term_id"] = term_id url = ACCOUNTS_API.format(account_id) + "/reports/{}".format( report_type) body = {"parameters": params} data = self._post_resource(url, body) data["account_id"] = account_id return Report(data=data)
def create_report(self, report_type, account_id, term_id=None, params={}): """ Generates a report instance for the canvas account id. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.create """ if term_id is not None: params["enrollment_term_id"] = term_id url = ACCOUNTS_API.format(account_id) + "/reports/{}".format( report_type) body = {"parameters": params} data = self._post_resource(url, body) data["account_id"] = account_id return Report(data=data)
[ "Generates", "a", "report", "instance", "for", "the", "canvas", "account", "id", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/reports.py#L53-L68
[ "def", "create_report", "(", "self", ",", "report_type", ",", "account_id", ",", "term_id", "=", "None", ",", "params", "=", "{", "}", ")", ":", "if", "term_id", "is", "not", "None", ":", "params", "[", "\"enrollment_term_id\"", "]", "=", "term_id", "url", "=", "ACCOUNTS_API", ".", "format", "(", "account_id", ")", "+", "\"/reports/{}\"", ".", "format", "(", "report_type", ")", "body", "=", "{", "\"parameters\"", ":", "params", "}", "data", "=", "self", ".", "_post_resource", "(", "url", ",", "body", ")", "data", "[", "\"account_id\"", "]", "=", "account_id", "return", "Report", "(", "data", "=", "data", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Reports.create_course_provisioning_report
Convenience method for create_report, for creating a course provisioning report.
uw_canvas/reports.py
def create_course_provisioning_report(self, account_id, term_id=None, params={}): """ Convenience method for create_report, for creating a course provisioning report. """ params["courses"] = True return self.create_report(ReportType.PROVISIONING, account_id, term_id, params)
def create_course_provisioning_report(self, account_id, term_id=None, params={}): """ Convenience method for create_report, for creating a course provisioning report. """ params["courses"] = True return self.create_report(ReportType.PROVISIONING, account_id, term_id, params)
[ "Convenience", "method", "for", "create_report", "for", "creating", "a", "course", "provisioning", "report", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/reports.py#L70-L78
[ "def", "create_course_provisioning_report", "(", "self", ",", "account_id", ",", "term_id", "=", "None", ",", "params", "=", "{", "}", ")", ":", "params", "[", "\"courses\"", "]", "=", "True", "return", "self", ".", "create_report", "(", "ReportType", ".", "PROVISIONING", ",", "account_id", ",", "term_id", ",", "params", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Reports.create_course_sis_export_report
Convenience method for create_report, for creating a course sis export report.
uw_canvas/reports.py
def create_course_sis_export_report(self, account_id, term_id=None, params={}): """ Convenience method for create_report, for creating a course sis export report. """ params["courses"] = True return self.create_report(ReportType.SIS_EXPORT, account_id, term_id, params)
def create_course_sis_export_report(self, account_id, term_id=None, params={}): """ Convenience method for create_report, for creating a course sis export report. """ params["courses"] = True return self.create_report(ReportType.SIS_EXPORT, account_id, term_id, params)
[ "Convenience", "method", "for", "create_report", "for", "creating", "a", "course", "sis", "export", "report", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/reports.py#L110-L118
[ "def", "create_course_sis_export_report", "(", "self", ",", "account_id", ",", "term_id", "=", "None", ",", "params", "=", "{", "}", ")", ":", "params", "[", "\"courses\"", "]", "=", "True", "return", "self", ".", "create_report", "(", "ReportType", ".", "SIS_EXPORT", ",", "account_id", ",", "term_id", ",", "params", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Reports.create_unused_courses_report
Convenience method for create_report, for creating an unused courses report.
uw_canvas/reports.py
def create_unused_courses_report(self, account_id, term_id=None): """ Convenience method for create_report, for creating an unused courses report. """ return self.create_report(ReportType.UNUSED_COURSES, account_id, term_id)
def create_unused_courses_report(self, account_id, term_id=None): """ Convenience method for create_report, for creating an unused courses report. """ return self.create_report(ReportType.UNUSED_COURSES, account_id, term_id)
[ "Convenience", "method", "for", "create_report", "for", "creating", "an", "unused", "courses", "report", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/reports.py#L120-L126
[ "def", "create_unused_courses_report", "(", "self", ",", "account_id", ",", "term_id", "=", "None", ")", ":", "return", "self", ".", "create_report", "(", "ReportType", ".", "UNUSED_COURSES", ",", "account_id", ",", "term_id", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Reports.get_report_data
Returns a completed report as a list of csv strings.
uw_canvas/reports.py
def get_report_data(self, report): """ Returns a completed report as a list of csv strings. """ if report.report_id is None or report.status is None: raise ReportFailureException(report) interval = getattr(settings, 'CANVAS_REPORT_POLLING_INTERVAL', 5) while report.status != "complete": if report.status == "error": raise ReportFailureException(report) sleep(interval) report = self.get_report_status(report) if report.attachment is None or report.attachment.url is None: return data = self._get_report_file(report.attachment.url) return data.split("\n")
def get_report_data(self, report): """ Returns a completed report as a list of csv strings. """ if report.report_id is None or report.status is None: raise ReportFailureException(report) interval = getattr(settings, 'CANVAS_REPORT_POLLING_INTERVAL', 5) while report.status != "complete": if report.status == "error": raise ReportFailureException(report) sleep(interval) report = self.get_report_status(report) if report.attachment is None or report.attachment.url is None: return data = self._get_report_file(report.attachment.url) return data.split("\n")
[ "Returns", "a", "completed", "report", "as", "a", "list", "of", "csv", "strings", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/reports.py#L128-L147
[ "def", "get_report_data", "(", "self", ",", "report", ")", ":", "if", "report", ".", "report_id", "is", "None", "or", "report", ".", "status", "is", "None", ":", "raise", "ReportFailureException", "(", "report", ")", "interval", "=", "getattr", "(", "settings", ",", "'CANVAS_REPORT_POLLING_INTERVAL'", ",", "5", ")", "while", "report", ".", "status", "!=", "\"complete\"", ":", "if", "report", ".", "status", "==", "\"error\"", ":", "raise", "ReportFailureException", "(", "report", ")", "sleep", "(", "interval", ")", "report", "=", "self", ".", "get_report_status", "(", "report", ")", "if", "report", ".", "attachment", "is", "None", "or", "report", ".", "attachment", ".", "url", "is", "None", ":", "return", "data", "=", "self", ".", "_get_report_file", "(", "report", ".", "attachment", ".", "url", ")", "return", "data", ".", "split", "(", "\"\\n\"", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Reports.get_report_status
Returns the status of a report. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.show
uw_canvas/reports.py
def get_report_status(self, report): """ Returns the status of a report. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.show """ if (report.account_id is None or report.type is None or report.report_id is None): raise ReportFailureException(report) url = ACCOUNTS_API.format(report.account_id) + "/reports/{}/{}".format( report.type, report.report_id) data = self._get_resource(url) data["account_id"] = report.account_id return Report(data=data)
def get_report_status(self, report): """ Returns the status of a report. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.show """ if (report.account_id is None or report.type is None or report.report_id is None): raise ReportFailureException(report) url = ACCOUNTS_API.format(report.account_id) + "/reports/{}/{}".format( report.type, report.report_id) data = self._get_resource(url) data["account_id"] = report.account_id return Report(data=data)
[ "Returns", "the", "status", "of", "a", "report", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/reports.py#L149-L164
[ "def", "get_report_status", "(", "self", ",", "report", ")", ":", "if", "(", "report", ".", "account_id", "is", "None", "or", "report", ".", "type", "is", "None", "or", "report", ".", "report_id", "is", "None", ")", ":", "raise", "ReportFailureException", "(", "report", ")", "url", "=", "ACCOUNTS_API", ".", "format", "(", "report", ".", "account_id", ")", "+", "\"/reports/{}/{}\"", ".", "format", "(", "report", ".", "type", ",", "report", ".", "report_id", ")", "data", "=", "self", ".", "_get_resource", "(", "url", ")", "data", "[", "\"account_id\"", "]", "=", "report", ".", "account_id", "return", "Report", "(", "data", "=", "data", ")" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
Reports.delete_report
Deletes a generated report instance. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.destroy
uw_canvas/reports.py
def delete_report(self, report): """ Deletes a generated report instance. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.destroy """ url = ACCOUNTS_API.format(report.account_id) + "/reports/{}/{}".format( report.type, report.report_id) response = self._delete_resource(url) return True
def delete_report(self, report): """ Deletes a generated report instance. https://canvas.instructure.com/doc/api/account_reports.html#method.account_reports.destroy """ url = ACCOUNTS_API.format(report.account_id) + "/reports/{}/{}".format( report.type, report.report_id) response = self._delete_resource(url) return True
[ "Deletes", "a", "generated", "report", "instance", "." ]
uw-it-aca/uw-restclients-canvas
python
https://github.com/uw-it-aca/uw-restclients-canvas/blob/9845faf33d49a8f06908efc22640c001116d6ea2/uw_canvas/reports.py#L166-L176
[ "def", "delete_report", "(", "self", ",", "report", ")", ":", "url", "=", "ACCOUNTS_API", ".", "format", "(", "report", ".", "account_id", ")", "+", "\"/reports/{}/{}\"", ".", "format", "(", "report", ".", "type", ",", "report", ".", "report_id", ")", "response", "=", "self", ".", "_delete_resource", "(", "url", ")", "return", "True" ]
9845faf33d49a8f06908efc22640c001116d6ea2
test
crop_image
Crop an image given the top left corner. :param img: The image :param start_y: The top left corner y coord :param start_x: The top left corner x coord :param h: The result height :param w: The result width :return: The cropped image.
opendatalake/detection/utils.py
def crop_image(img, start_y, start_x, h, w): """ Crop an image given the top left corner. :param img: The image :param start_y: The top left corner y coord :param start_x: The top left corner x coord :param h: The result height :param w: The result width :return: The cropped image. """ return img[start_y:start_y + h, start_x:start_x + w, :].copy()
def crop_image(img, start_y, start_x, h, w): """ Crop an image given the top left corner. :param img: The image :param start_y: The top left corner y coord :param start_x: The top left corner x coord :param h: The result height :param w: The result width :return: The cropped image. """ return img[start_y:start_y + h, start_x:start_x + w, :].copy()
[ "Crop", "an", "image", "given", "the", "top", "left", "corner", ".", ":", "param", "img", ":", "The", "image", ":", "param", "start_y", ":", "The", "top", "left", "corner", "y", "coord", ":", "param", "start_x", ":", "The", "top", "left", "corner", "x", "coord", ":", "param", "h", ":", "The", "result", "height", ":", "param", "w", ":", "The", "result", "width", ":", "return", ":", "The", "cropped", "image", "." ]
penguinmenac3/opendatalake
python
https://github.com/penguinmenac3/opendatalake/blob/77c888377095e1812a16982c8efbd2f6b1697a33/opendatalake/detection/utils.py#L758-L768
[ "def", "crop_image", "(", "img", ",", "start_y", ",", "start_x", ",", "h", ",", "w", ")", ":", "return", "img", "[", "start_y", ":", "start_y", "+", "h", ",", "start_x", ":", "start_x", "+", "w", ",", ":", "]", ".", "copy", "(", ")" ]
77c888377095e1812a16982c8efbd2f6b1697a33
test
move_detections
Move detections in direction dx, dy. :param label: The label dict containing all detection lists. :param dy: The delta in y direction as a number. :param dx: The delta in x direction as a number. :return:
opendatalake/detection/utils.py
def move_detections(label, dy, dx): """ Move detections in direction dx, dy. :param label: The label dict containing all detection lists. :param dy: The delta in y direction as a number. :param dx: The delta in x direction as a number. :return: """ for k in label.keys(): if k.startswith("detection"): detections = label[k] for detection in detections: detection.move_image(-dx, -dy)
def move_detections(label, dy, dx): """ Move detections in direction dx, dy. :param label: The label dict containing all detection lists. :param dy: The delta in y direction as a number. :param dx: The delta in x direction as a number. :return: """ for k in label.keys(): if k.startswith("detection"): detections = label[k] for detection in detections: detection.move_image(-dx, -dy)
[ "Move", "detections", "in", "direction", "dx", "dy", "." ]
penguinmenac3/opendatalake
python
https://github.com/penguinmenac3/opendatalake/blob/77c888377095e1812a16982c8efbd2f6b1697a33/opendatalake/detection/utils.py#L771-L784
[ "def", "move_detections", "(", "label", ",", "dy", ",", "dx", ")", ":", "for", "k", "in", "label", ".", "keys", "(", ")", ":", "if", "k", ".", "startswith", "(", "\"detection\"", ")", ":", "detections", "=", "label", "[", "k", "]", "for", "detection", "in", "detections", ":", "detection", ".", "move_image", "(", "-", "dx", ",", "-", "dy", ")" ]
77c888377095e1812a16982c8efbd2f6b1697a33
test
hflip_detections
Horizontally flip detections according to an image flip. :param label: The label dict containing all detection lists. :param w: The width of the image as a number. :return:
opendatalake/detection/utils.py
def hflip_detections(label, w): """ Horizontally flip detections according to an image flip. :param label: The label dict containing all detection lists. :param w: The width of the image as a number. :return: """ for k in label.keys(): if k.startswith("detection"): detections = label[k] for detection in detections: detection.cx = w - detection.cx if k == "detections_2.5d": detection.theta = math.pi - detection.theta
def hflip_detections(label, w): """ Horizontally flip detections according to an image flip. :param label: The label dict containing all detection lists. :param w: The width of the image as a number. :return: """ for k in label.keys(): if k.startswith("detection"): detections = label[k] for detection in detections: detection.cx = w - detection.cx if k == "detections_2.5d": detection.theta = math.pi - detection.theta
[ "Horizontally", "flip", "detections", "according", "to", "an", "image", "flip", "." ]
penguinmenac3/opendatalake
python
https://github.com/penguinmenac3/opendatalake/blob/77c888377095e1812a16982c8efbd2f6b1697a33/opendatalake/detection/utils.py#L787-L801
[ "def", "hflip_detections", "(", "label", ",", "w", ")", ":", "for", "k", "in", "label", ".", "keys", "(", ")", ":", "if", "k", ".", "startswith", "(", "\"detection\"", ")", ":", "detections", "=", "label", "[", "k", "]", "for", "detection", "in", "detections", ":", "detection", ".", "cx", "=", "w", "-", "detection", ".", "cx", "if", "k", "==", "\"detections_2.5d\"", ":", "detection", ".", "theta", "=", "math", ".", "pi", "-", "detection", ".", "theta" ]
77c888377095e1812a16982c8efbd2f6b1697a33
test
augment_detections
Augment the detection dataset. In your hyper_parameters.problem.augmentation add configurations to enable features. Supports "enable_horizontal_flip", "enable_micro_translation", "random_crop" : {"shape": { "width", "height" }} and "enable_texture_augmentation". Make sure to also set the "steps" otherwise this method will not be used properly. Random crop ensures at least one detection is in the crop region. Sample configuration "problem": { "augmentation": { "steps": 40, "enable_texture_augmentation": true, "enable_micro_translation": true, "enable_horizontal_flip": true, "random_crop": { "shape": { "width": 256, "height": 256 } } } } :param hyper_params: The hyper parameters object :param feature: A dict containing all features, must be in the style created by detection datasets. :param label: A label dict in the detection dataset style. :return: Modified feature and label dict (copied & modified).
opendatalake/detection/utils.py
def augment_detections(hyper_params, feature, label): """ Augment the detection dataset. In your hyper_parameters.problem.augmentation add configurations to enable features. Supports "enable_horizontal_flip", "enable_micro_translation", "random_crop" : {"shape": { "width", "height" }} and "enable_texture_augmentation". Make sure to also set the "steps" otherwise this method will not be used properly. Random crop ensures at least one detection is in the crop region. Sample configuration "problem": { "augmentation": { "steps": 40, "enable_texture_augmentation": true, "enable_micro_translation": true, "enable_horizontal_flip": true, "random_crop": { "shape": { "width": 256, "height": 256 } } } } :param hyper_params: The hyper parameters object :param feature: A dict containing all features, must be in the style created by detection datasets. :param label: A label dict in the detection dataset style. :return: Modified feature and label dict (copied & modified). """ # Do not augment these ways: # 1) Rotation is not possible # 3) Scaling is not possible, because it ruins depth perception # However, random crops can improve performance. (Training speed and accuracy) if hyper_params.problem.get("augmentation", None) is None: return feature, label img_h, img_w, img_c = feature["image"].shape augmented_feature = {} augmented_label = {} augmented_feature["image"] = feature["image"].copy() if "depth" in feature: augmented_feature["depth"] = feature["depth"].copy() if "calibration" in feature: augmented_feature["calibration"] = feature["calibration"] augmented_feature["hflipped"] = np.array([0], dtype=np.uint8) augmented_feature["crop_offset"] = np.array([0, 0], dtype=np.int8) for k in label.keys(): augmented_label[k] = [detection.copy() for detection in label[k]] if hyper_params.problem.augmentation.get("enable_horizontal_flip", False): if random.random() < 0.5: img_h, img_w, img_c = augmented_feature["image"].shape augmented_feature["image"] = np.fliplr(augmented_feature["image"]) if "depth" in feature: augmented_feature["depth"] = np.fliplr(augmented_feature["depth"]) augmented_feature["hflipped"][0] = 1 hflip_detections(augmented_label, img_w) if hyper_params.problem.augmentation.get("enable_micro_translation", False): img_h, img_w, img_c = augmented_feature["image"].shape dx = int(random.random() * 3) dy = int(random.random() * 3) augmented_feature["image"] = crop_image(augmented_feature["image"], dy, dx, img_h - dy, img_w - dx) if "depth" in feature: augmented_feature["depth"] = crop_image(augmented_feature["depth"], dy, dx, img_h - dy, img_w - dx) augmented_feature["crop_offset"][0] += dy augmented_feature["crop_offset"][1] += dx move_detections(augmented_label, -dy, -dx) if hyper_params.problem.augmentation.get("random_crop", None) is not None: img_h, img_w, img_c = augmented_feature["image"].shape target_w = hyper_params.problem.augmentation.random_crop.shape.width target_h = hyper_params.problem.augmentation.random_crop.shape.height delta_x = max(int(math.ceil((target_w + 1 - img_w) / 2)), 0) delta_y = max(int(math.ceil((target_h + 1 - img_h) / 2)), 0) move_detections(augmented_label, delta_y, delta_x) augmented_feature["image"] = cv2.copyMakeBorder(augmented_feature["image"], delta_y, delta_y, delta_x, delta_x, cv2.BORDER_CONSTANT) img_h, img_w, img_c = augmented_feature["image"].shape start_x = 0 start_y = 0 if len(augmented_label["detections_2d"]) != 0: idx = random.randint(0, len(augmented_label["detections_2d"]) - 1) detection = augmented_label["detections_2d"][idx] start_x = int(detection.cx - random.random() * (target_w - 20) / 2.0 - 10) start_y = int(detection.cy - random.random() * (target_h - 20) / 2.0 - 10) else: start_x = int(img_w * random.random()) start_y = int(img_h * random.random()) # Compute start point so that crop fit's into image and random crop contains detection if start_x < 0: start_x = 0 if start_y < 0: start_y = 0 if start_x >= img_w - target_w: start_x = img_w - target_w - 1 if start_y >= img_h - target_h: start_y = img_h - target_h - 1 # Crop image augmented_feature["image"] = crop_image(augmented_feature["image"], start_y, start_x, target_h, target_w) if "depth" in feature: augmented_feature["depth"] = crop_image(augmented_feature["depth"], start_y, start_x, target_h, target_w) augmented_feature["crop_offset"][0] += start_y augmented_feature["crop_offset"][1] += start_x # Crop labels move_detections(augmented_label, -start_y, -start_x) if hyper_params.problem.augmentation.get("enable_texture_augmentation", False): if random.random() < 0.5: augmented_feature["image"] = full_texture_augmentation(augmented_feature["image"]) return augmented_feature, augmented_label
def augment_detections(hyper_params, feature, label): """ Augment the detection dataset. In your hyper_parameters.problem.augmentation add configurations to enable features. Supports "enable_horizontal_flip", "enable_micro_translation", "random_crop" : {"shape": { "width", "height" }} and "enable_texture_augmentation". Make sure to also set the "steps" otherwise this method will not be used properly. Random crop ensures at least one detection is in the crop region. Sample configuration "problem": { "augmentation": { "steps": 40, "enable_texture_augmentation": true, "enable_micro_translation": true, "enable_horizontal_flip": true, "random_crop": { "shape": { "width": 256, "height": 256 } } } } :param hyper_params: The hyper parameters object :param feature: A dict containing all features, must be in the style created by detection datasets. :param label: A label dict in the detection dataset style. :return: Modified feature and label dict (copied & modified). """ # Do not augment these ways: # 1) Rotation is not possible # 3) Scaling is not possible, because it ruins depth perception # However, random crops can improve performance. (Training speed and accuracy) if hyper_params.problem.get("augmentation", None) is None: return feature, label img_h, img_w, img_c = feature["image"].shape augmented_feature = {} augmented_label = {} augmented_feature["image"] = feature["image"].copy() if "depth" in feature: augmented_feature["depth"] = feature["depth"].copy() if "calibration" in feature: augmented_feature["calibration"] = feature["calibration"] augmented_feature["hflipped"] = np.array([0], dtype=np.uint8) augmented_feature["crop_offset"] = np.array([0, 0], dtype=np.int8) for k in label.keys(): augmented_label[k] = [detection.copy() for detection in label[k]] if hyper_params.problem.augmentation.get("enable_horizontal_flip", False): if random.random() < 0.5: img_h, img_w, img_c = augmented_feature["image"].shape augmented_feature["image"] = np.fliplr(augmented_feature["image"]) if "depth" in feature: augmented_feature["depth"] = np.fliplr(augmented_feature["depth"]) augmented_feature["hflipped"][0] = 1 hflip_detections(augmented_label, img_w) if hyper_params.problem.augmentation.get("enable_micro_translation", False): img_h, img_w, img_c = augmented_feature["image"].shape dx = int(random.random() * 3) dy = int(random.random() * 3) augmented_feature["image"] = crop_image(augmented_feature["image"], dy, dx, img_h - dy, img_w - dx) if "depth" in feature: augmented_feature["depth"] = crop_image(augmented_feature["depth"], dy, dx, img_h - dy, img_w - dx) augmented_feature["crop_offset"][0] += dy augmented_feature["crop_offset"][1] += dx move_detections(augmented_label, -dy, -dx) if hyper_params.problem.augmentation.get("random_crop", None) is not None: img_h, img_w, img_c = augmented_feature["image"].shape target_w = hyper_params.problem.augmentation.random_crop.shape.width target_h = hyper_params.problem.augmentation.random_crop.shape.height delta_x = max(int(math.ceil((target_w + 1 - img_w) / 2)), 0) delta_y = max(int(math.ceil((target_h + 1 - img_h) / 2)), 0) move_detections(augmented_label, delta_y, delta_x) augmented_feature["image"] = cv2.copyMakeBorder(augmented_feature["image"], delta_y, delta_y, delta_x, delta_x, cv2.BORDER_CONSTANT) img_h, img_w, img_c = augmented_feature["image"].shape start_x = 0 start_y = 0 if len(augmented_label["detections_2d"]) != 0: idx = random.randint(0, len(augmented_label["detections_2d"]) - 1) detection = augmented_label["detections_2d"][idx] start_x = int(detection.cx - random.random() * (target_w - 20) / 2.0 - 10) start_y = int(detection.cy - random.random() * (target_h - 20) / 2.0 - 10) else: start_x = int(img_w * random.random()) start_y = int(img_h * random.random()) # Compute start point so that crop fit's into image and random crop contains detection if start_x < 0: start_x = 0 if start_y < 0: start_y = 0 if start_x >= img_w - target_w: start_x = img_w - target_w - 1 if start_y >= img_h - target_h: start_y = img_h - target_h - 1 # Crop image augmented_feature["image"] = crop_image(augmented_feature["image"], start_y, start_x, target_h, target_w) if "depth" in feature: augmented_feature["depth"] = crop_image(augmented_feature["depth"], start_y, start_x, target_h, target_w) augmented_feature["crop_offset"][0] += start_y augmented_feature["crop_offset"][1] += start_x # Crop labels move_detections(augmented_label, -start_y, -start_x) if hyper_params.problem.augmentation.get("enable_texture_augmentation", False): if random.random() < 0.5: augmented_feature["image"] = full_texture_augmentation(augmented_feature["image"]) return augmented_feature, augmented_label
[ "Augment", "the", "detection", "dataset", "." ]
penguinmenac3/opendatalake
python
https://github.com/penguinmenac3/opendatalake/blob/77c888377095e1812a16982c8efbd2f6b1697a33/opendatalake/detection/utils.py#L804-L926
[ "def", "augment_detections", "(", "hyper_params", ",", "feature", ",", "label", ")", ":", "# Do not augment these ways:", "# 1) Rotation is not possible", "# 3) Scaling is not possible, because it ruins depth perception", "# However, random crops can improve performance. (Training speed and accuracy)", "if", "hyper_params", ".", "problem", ".", "get", "(", "\"augmentation\"", ",", "None", ")", "is", "None", ":", "return", "feature", ",", "label", "img_h", ",", "img_w", ",", "img_c", "=", "feature", "[", "\"image\"", "]", ".", "shape", "augmented_feature", "=", "{", "}", "augmented_label", "=", "{", "}", "augmented_feature", "[", "\"image\"", "]", "=", "feature", "[", "\"image\"", "]", ".", "copy", "(", ")", "if", "\"depth\"", "in", "feature", ":", "augmented_feature", "[", "\"depth\"", "]", "=", "feature", "[", "\"depth\"", "]", ".", "copy", "(", ")", "if", "\"calibration\"", "in", "feature", ":", "augmented_feature", "[", "\"calibration\"", "]", "=", "feature", "[", "\"calibration\"", "]", "augmented_feature", "[", "\"hflipped\"", "]", "=", "np", ".", "array", "(", "[", "0", "]", ",", "dtype", "=", "np", ".", "uint8", ")", "augmented_feature", "[", "\"crop_offset\"", "]", "=", "np", ".", "array", "(", "[", "0", ",", "0", "]", ",", "dtype", "=", "np", ".", "int8", ")", "for", "k", "in", "label", ".", "keys", "(", ")", ":", "augmented_label", "[", "k", "]", "=", "[", "detection", ".", "copy", "(", ")", "for", "detection", "in", "label", "[", "k", "]", "]", "if", "hyper_params", ".", "problem", ".", "augmentation", ".", "get", "(", "\"enable_horizontal_flip\"", ",", "False", ")", ":", "if", "random", ".", "random", "(", ")", "<", "0.5", ":", "img_h", ",", "img_w", ",", "img_c", "=", "augmented_feature", "[", "\"image\"", "]", ".", "shape", "augmented_feature", "[", "\"image\"", "]", "=", "np", ".", "fliplr", "(", "augmented_feature", "[", "\"image\"", "]", ")", "if", "\"depth\"", "in", "feature", ":", "augmented_feature", "[", "\"depth\"", "]", "=", "np", ".", "fliplr", "(", "augmented_feature", "[", "\"depth\"", "]", ")", "augmented_feature", "[", "\"hflipped\"", "]", "[", "0", "]", "=", "1", "hflip_detections", "(", "augmented_label", ",", "img_w", ")", "if", "hyper_params", ".", "problem", ".", "augmentation", ".", "get", "(", "\"enable_micro_translation\"", ",", "False", ")", ":", "img_h", ",", "img_w", ",", "img_c", "=", "augmented_feature", "[", "\"image\"", "]", ".", "shape", "dx", "=", "int", "(", "random", ".", "random", "(", ")", "*", "3", ")", "dy", "=", "int", "(", "random", ".", "random", "(", ")", "*", "3", ")", "augmented_feature", "[", "\"image\"", "]", "=", "crop_image", "(", "augmented_feature", "[", "\"image\"", "]", ",", "dy", ",", "dx", ",", "img_h", "-", "dy", ",", "img_w", "-", "dx", ")", "if", "\"depth\"", "in", "feature", ":", "augmented_feature", "[", "\"depth\"", "]", "=", "crop_image", "(", "augmented_feature", "[", "\"depth\"", "]", ",", "dy", ",", "dx", ",", "img_h", "-", "dy", ",", "img_w", "-", "dx", ")", "augmented_feature", "[", "\"crop_offset\"", "]", "[", "0", "]", "+=", "dy", "augmented_feature", "[", "\"crop_offset\"", "]", "[", "1", "]", "+=", "dx", "move_detections", "(", "augmented_label", ",", "-", "dy", ",", "-", "dx", ")", "if", "hyper_params", ".", "problem", ".", "augmentation", ".", "get", "(", "\"random_crop\"", ",", "None", ")", "is", "not", "None", ":", "img_h", ",", "img_w", ",", "img_c", "=", "augmented_feature", "[", "\"image\"", "]", ".", "shape", "target_w", "=", "hyper_params", ".", "problem", ".", "augmentation", ".", "random_crop", ".", "shape", ".", "width", "target_h", "=", "hyper_params", ".", "problem", ".", "augmentation", ".", "random_crop", ".", "shape", ".", "height", "delta_x", "=", "max", "(", "int", "(", "math", ".", "ceil", "(", "(", "target_w", "+", "1", "-", "img_w", ")", "/", "2", ")", ")", ",", "0", ")", "delta_y", "=", "max", "(", "int", "(", "math", ".", "ceil", "(", "(", "target_h", "+", "1", "-", "img_h", ")", "/", "2", ")", ")", ",", "0", ")", "move_detections", "(", "augmented_label", ",", "delta_y", ",", "delta_x", ")", "augmented_feature", "[", "\"image\"", "]", "=", "cv2", ".", "copyMakeBorder", "(", "augmented_feature", "[", "\"image\"", "]", ",", "delta_y", ",", "delta_y", ",", "delta_x", ",", "delta_x", ",", "cv2", ".", "BORDER_CONSTANT", ")", "img_h", ",", "img_w", ",", "img_c", "=", "augmented_feature", "[", "\"image\"", "]", ".", "shape", "start_x", "=", "0", "start_y", "=", "0", "if", "len", "(", "augmented_label", "[", "\"detections_2d\"", "]", ")", "!=", "0", ":", "idx", "=", "random", ".", "randint", "(", "0", ",", "len", "(", "augmented_label", "[", "\"detections_2d\"", "]", ")", "-", "1", ")", "detection", "=", "augmented_label", "[", "\"detections_2d\"", "]", "[", "idx", "]", "start_x", "=", "int", "(", "detection", ".", "cx", "-", "random", ".", "random", "(", ")", "*", "(", "target_w", "-", "20", ")", "/", "2.0", "-", "10", ")", "start_y", "=", "int", "(", "detection", ".", "cy", "-", "random", ".", "random", "(", ")", "*", "(", "target_h", "-", "20", ")", "/", "2.0", "-", "10", ")", "else", ":", "start_x", "=", "int", "(", "img_w", "*", "random", ".", "random", "(", ")", ")", "start_y", "=", "int", "(", "img_h", "*", "random", ".", "random", "(", ")", ")", "# Compute start point so that crop fit's into image and random crop contains detection", "if", "start_x", "<", "0", ":", "start_x", "=", "0", "if", "start_y", "<", "0", ":", "start_y", "=", "0", "if", "start_x", ">=", "img_w", "-", "target_w", ":", "start_x", "=", "img_w", "-", "target_w", "-", "1", "if", "start_y", ">=", "img_h", "-", "target_h", ":", "start_y", "=", "img_h", "-", "target_h", "-", "1", "# Crop image", "augmented_feature", "[", "\"image\"", "]", "=", "crop_image", "(", "augmented_feature", "[", "\"image\"", "]", ",", "start_y", ",", "start_x", ",", "target_h", ",", "target_w", ")", "if", "\"depth\"", "in", "feature", ":", "augmented_feature", "[", "\"depth\"", "]", "=", "crop_image", "(", "augmented_feature", "[", "\"depth\"", "]", ",", "start_y", ",", "start_x", ",", "target_h", ",", "target_w", ")", "augmented_feature", "[", "\"crop_offset\"", "]", "[", "0", "]", "+=", "start_y", "augmented_feature", "[", "\"crop_offset\"", "]", "[", "1", "]", "+=", "start_x", "# Crop labels", "move_detections", "(", "augmented_label", ",", "-", "start_y", ",", "-", "start_x", ")", "if", "hyper_params", ".", "problem", ".", "augmentation", ".", "get", "(", "\"enable_texture_augmentation\"", ",", "False", ")", ":", "if", "random", ".", "random", "(", ")", "<", "0.5", ":", "augmented_feature", "[", "\"image\"", "]", "=", "full_texture_augmentation", "(", "augmented_feature", "[", "\"image\"", "]", ")", "return", "augmented_feature", ",", "augmented_label" ]
77c888377095e1812a16982c8efbd2f6b1697a33
test
get_dict_from_obj
Edit to get the dict even when the object is a GenericRelatedObjectManager. Added the try except.
inplaceeditform/commons.py
def get_dict_from_obj(obj): ''' Edit to get the dict even when the object is a GenericRelatedObjectManager. Added the try except. ''' obj_dict = obj.__dict__ obj_dict_result = obj_dict.copy() for key, value in obj_dict.items(): if key.endswith('_id'): key2 = key.replace('_id', '') try: field, model, direct, m2m = obj._meta.get_field_by_name(key2) if isinstance(field, ForeignKey): obj_dict_result[key2] = obj_dict_result[key] del obj_dict_result[key] except FieldDoesNotExist: pass manytomany_list = obj._meta.many_to_many for manytomany in manytomany_list: pks = [obj_rel.pk for obj_rel in manytomany.value_from_object(obj).select_related()] if pks: obj_dict_result[manytomany.name] = pks return obj_dict_result
def get_dict_from_obj(obj): ''' Edit to get the dict even when the object is a GenericRelatedObjectManager. Added the try except. ''' obj_dict = obj.__dict__ obj_dict_result = obj_dict.copy() for key, value in obj_dict.items(): if key.endswith('_id'): key2 = key.replace('_id', '') try: field, model, direct, m2m = obj._meta.get_field_by_name(key2) if isinstance(field, ForeignKey): obj_dict_result[key2] = obj_dict_result[key] del obj_dict_result[key] except FieldDoesNotExist: pass manytomany_list = obj._meta.many_to_many for manytomany in manytomany_list: pks = [obj_rel.pk for obj_rel in manytomany.value_from_object(obj).select_related()] if pks: obj_dict_result[manytomany.name] = pks return obj_dict_result
[ "Edit", "to", "get", "the", "dict", "even", "when", "the", "object", "is", "a", "GenericRelatedObjectManager", ".", "Added", "the", "try", "except", "." ]
django-inplaceedit/django-inplaceedit
python
https://github.com/django-inplaceedit/django-inplaceedit/blob/7ba18e7906f56c56395ca07e2486755062efce00/inplaceeditform/commons.py#L35-L57
[ "def", "get_dict_from_obj", "(", "obj", ")", ":", "obj_dict", "=", "obj", ".", "__dict__", "obj_dict_result", "=", "obj_dict", ".", "copy", "(", ")", "for", "key", ",", "value", "in", "obj_dict", ".", "items", "(", ")", ":", "if", "key", ".", "endswith", "(", "'_id'", ")", ":", "key2", "=", "key", ".", "replace", "(", "'_id'", ",", "''", ")", "try", ":", "field", ",", "model", ",", "direct", ",", "m2m", "=", "obj", ".", "_meta", ".", "get_field_by_name", "(", "key2", ")", "if", "isinstance", "(", "field", ",", "ForeignKey", ")", ":", "obj_dict_result", "[", "key2", "]", "=", "obj_dict_result", "[", "key", "]", "del", "obj_dict_result", "[", "key", "]", "except", "FieldDoesNotExist", ":", "pass", "manytomany_list", "=", "obj", ".", "_meta", ".", "many_to_many", "for", "manytomany", "in", "manytomany_list", ":", "pks", "=", "[", "obj_rel", ".", "pk", "for", "obj_rel", "in", "manytomany", ".", "value_from_object", "(", "obj", ")", ".", "select_related", "(", ")", "]", "if", "pks", ":", "obj_dict_result", "[", "manytomany", ".", "name", "]", "=", "pks", "return", "obj_dict_result" ]
7ba18e7906f56c56395ca07e2486755062efce00
test
BaseAdaptorField.get_config
Get the arguments given to the template tag element and complete these with the ones from the settings.py if necessary.
inplaceeditform/fields.py
def get_config(self, request, **kwargs): """ Get the arguments given to the template tag element and complete these with the ones from the settings.py if necessary. """ config = kwargs config_from_settings = deepcopy(inplace_settings.DEFAULT_INPLACE_EDIT_OPTIONS) config_one_by_one = inplace_settings.DEFAULT_INPLACE_EDIT_OPTIONS_ONE_BY_ONE if not config_one_by_one: # Solution 1: Using default config only if none specified. if not config and config_from_settings: config = config_from_settings else: # Solution 2: Updating the configured config with the default one. config = dict(config_from_settings, **config) return config
def get_config(self, request, **kwargs): """ Get the arguments given to the template tag element and complete these with the ones from the settings.py if necessary. """ config = kwargs config_from_settings = deepcopy(inplace_settings.DEFAULT_INPLACE_EDIT_OPTIONS) config_one_by_one = inplace_settings.DEFAULT_INPLACE_EDIT_OPTIONS_ONE_BY_ONE if not config_one_by_one: # Solution 1: Using default config only if none specified. if not config and config_from_settings: config = config_from_settings else: # Solution 2: Updating the configured config with the default one. config = dict(config_from_settings, **config) return config
[ "Get", "the", "arguments", "given", "to", "the", "template", "tag", "element", "and", "complete", "these", "with", "the", "ones", "from", "the", "settings", ".", "py", "if", "necessary", "." ]
django-inplaceedit/django-inplaceedit
python
https://github.com/django-inplaceedit/django-inplaceedit/blob/7ba18e7906f56c56395ca07e2486755062efce00/inplaceeditform/fields.py#L92-L109
[ "def", "get_config", "(", "self", ",", "request", ",", "*", "*", "kwargs", ")", ":", "config", "=", "kwargs", "config_from_settings", "=", "deepcopy", "(", "inplace_settings", ".", "DEFAULT_INPLACE_EDIT_OPTIONS", ")", "config_one_by_one", "=", "inplace_settings", ".", "DEFAULT_INPLACE_EDIT_OPTIONS_ONE_BY_ONE", "if", "not", "config_one_by_one", ":", "# Solution 1: Using default config only if none specified.", "if", "not", "config", "and", "config_from_settings", ":", "config", "=", "config_from_settings", "else", ":", "# Solution 2: Updating the configured config with the default one.", "config", "=", "dict", "(", "config_from_settings", ",", "*", "*", "config", ")", "return", "config" ]
7ba18e7906f56c56395ca07e2486755062efce00
test
BaseAdaptorField.empty_value
Get the text to display when the field is empty.
inplaceeditform/fields.py
def empty_value(self): ''' Get the text to display when the field is empty. ''' edit_empty_value = self.config.get('edit_empty_value', False) if edit_empty_value: return edit_empty_value else: return unicode(inplace_settings.INPLACEEDIT_EDIT_EMPTY_VALUE)
def empty_value(self): ''' Get the text to display when the field is empty. ''' edit_empty_value = self.config.get('edit_empty_value', False) if edit_empty_value: return edit_empty_value else: return unicode(inplace_settings.INPLACEEDIT_EDIT_EMPTY_VALUE)
[ "Get", "the", "text", "to", "display", "when", "the", "field", "is", "empty", "." ]
django-inplaceedit/django-inplaceedit
python
https://github.com/django-inplaceedit/django-inplaceedit/blob/7ba18e7906f56c56395ca07e2486755062efce00/inplaceeditform/fields.py#L143-L151
[ "def", "empty_value", "(", "self", ")", ":", "edit_empty_value", "=", "self", ".", "config", ".", "get", "(", "'edit_empty_value'", ",", "False", ")", "if", "edit_empty_value", ":", "return", "edit_empty_value", "else", ":", "return", "unicode", "(", "inplace_settings", ".", "INPLACEEDIT_EDIT_EMPTY_VALUE", ")" ]
7ba18e7906f56c56395ca07e2486755062efce00
test
do_eval
Usage: {% eval %}1 + 1{% endeval %}
inplaceeditform/templatetags/inplace_edit.py
def do_eval(parser, token): "Usage: {% eval %}1 + 1{% endeval %}" nodelist = parser.parse(('endeval',)) class EvalNode(template.Node): def render(self, context): return template.Template(nodelist.render(context)).render(template.Context(context)) parser.delete_first_token() return EvalNode()
def do_eval(parser, token): "Usage: {% eval %}1 + 1{% endeval %}" nodelist = parser.parse(('endeval',)) class EvalNode(template.Node): def render(self, context): return template.Template(nodelist.render(context)).render(template.Context(context)) parser.delete_first_token() return EvalNode()
[ "Usage", ":", "{", "%", "eval", "%", "}", "1", "+", "1", "{", "%", "endeval", "%", "}" ]
django-inplaceedit/django-inplaceedit
python
https://github.com/django-inplaceedit/django-inplaceedit/blob/7ba18e7906f56c56395ca07e2486755062efce00/inplaceeditform/templatetags/inplace_edit.py#L123-L132
[ "def", "do_eval", "(", "parser", ",", "token", ")", ":", "nodelist", "=", "parser", ".", "parse", "(", "(", "'endeval'", ",", ")", ")", "class", "EvalNode", "(", "template", ".", "Node", ")", ":", "def", "render", "(", "self", ",", "context", ")", ":", "return", "template", ".", "Template", "(", "nodelist", ".", "render", "(", "context", ")", ")", ".", "render", "(", "template", ".", "Context", "(", "context", ")", ")", "parser", ".", "delete_first_token", "(", ")", "return", "EvalNode", "(", ")" ]
7ba18e7906f56c56395ca07e2486755062efce00
test
parse_args_kwargs
Parse uniformly args and kwargs from a templatetag Usage:: For parsing a template like this: {% footag my_contents,height=10,zoom=20 as myvar %} You simply do this: @register.tag def footag(parser, token): args, kwargs = parse_args_kwargs(parser, token)
inplaceeditform/tag_utils.py
def parse_args_kwargs(parser, token): """ Parse uniformly args and kwargs from a templatetag Usage:: For parsing a template like this: {% footag my_contents,height=10,zoom=20 as myvar %} You simply do this: @register.tag def footag(parser, token): args, kwargs = parse_args_kwargs(parser, token) """ bits = token.contents.split(' ') if len(bits) <= 1: raise template.TemplateSyntaxError("'%s' takes at least one argument" % bits[0]) if token.contents[13] == '"': end_quote = token.contents.index('"', 14) + 1 args = [template.Variable(token.contents[13:end_quote])] kwargs_start = end_quote else: try: next_space = token.contents.index(' ', 14) kwargs_start = next_space + 1 except ValueError: next_space = None kwargs_start = None args = [template.Variable(token.contents[13:next_space])] kwargs = {} kwargs_list = token.contents[kwargs_start:].split(',') for kwargs_item in kwargs_list: if '=' in kwargs_item: k, v = kwargs_item.split('=', 1) k = k.strip() kwargs[k] = template.Variable(v) return args, kwargs
def parse_args_kwargs(parser, token): """ Parse uniformly args and kwargs from a templatetag Usage:: For parsing a template like this: {% footag my_contents,height=10,zoom=20 as myvar %} You simply do this: @register.tag def footag(parser, token): args, kwargs = parse_args_kwargs(parser, token) """ bits = token.contents.split(' ') if len(bits) <= 1: raise template.TemplateSyntaxError("'%s' takes at least one argument" % bits[0]) if token.contents[13] == '"': end_quote = token.contents.index('"', 14) + 1 args = [template.Variable(token.contents[13:end_quote])] kwargs_start = end_quote else: try: next_space = token.contents.index(' ', 14) kwargs_start = next_space + 1 except ValueError: next_space = None kwargs_start = None args = [template.Variable(token.contents[13:next_space])] kwargs = {} kwargs_list = token.contents[kwargs_start:].split(',') for kwargs_item in kwargs_list: if '=' in kwargs_item: k, v = kwargs_item.split('=', 1) k = k.strip() kwargs[k] = template.Variable(v) return args, kwargs
[ "Parse", "uniformly", "args", "and", "kwargs", "from", "a", "templatetag" ]
django-inplaceedit/django-inplaceedit
python
https://github.com/django-inplaceedit/django-inplaceedit/blob/7ba18e7906f56c56395ca07e2486755062efce00/inplaceeditform/tag_utils.py#L22-L63
[ "def", "parse_args_kwargs", "(", "parser", ",", "token", ")", ":", "bits", "=", "token", ".", "contents", ".", "split", "(", "' '", ")", "if", "len", "(", "bits", ")", "<=", "1", ":", "raise", "template", ".", "TemplateSyntaxError", "(", "\"'%s' takes at least one argument\"", "%", "bits", "[", "0", "]", ")", "if", "token", ".", "contents", "[", "13", "]", "==", "'\"'", ":", "end_quote", "=", "token", ".", "contents", ".", "index", "(", "'\"'", ",", "14", ")", "+", "1", "args", "=", "[", "template", ".", "Variable", "(", "token", ".", "contents", "[", "13", ":", "end_quote", "]", ")", "]", "kwargs_start", "=", "end_quote", "else", ":", "try", ":", "next_space", "=", "token", ".", "contents", ".", "index", "(", "' '", ",", "14", ")", "kwargs_start", "=", "next_space", "+", "1", "except", "ValueError", ":", "next_space", "=", "None", "kwargs_start", "=", "None", "args", "=", "[", "template", ".", "Variable", "(", "token", ".", "contents", "[", "13", ":", "next_space", "]", ")", "]", "kwargs", "=", "{", "}", "kwargs_list", "=", "token", ".", "contents", "[", "kwargs_start", ":", "]", ".", "split", "(", "','", ")", "for", "kwargs_item", "in", "kwargs_list", ":", "if", "'='", "in", "kwargs_item", ":", "k", ",", "v", "=", "kwargs_item", ".", "split", "(", "'='", ",", "1", ")", "k", "=", "k", ".", "strip", "(", ")", "kwargs", "[", "k", "]", "=", "template", ".", "Variable", "(", "v", ")", "return", "args", ",", "kwargs" ]
7ba18e7906f56c56395ca07e2486755062efce00
test
PrometheusExporterScript.create_metrics
Create and register metrics from a list of MetricConfigs.
prometheus_aioexporter/script.py
def create_metrics( self, metric_configs: Iterable[MetricConfig]) -> Dict[str, Metric]: """Create and register metrics from a list of MetricConfigs.""" return self.registry.create_metrics(metric_configs)
def create_metrics( self, metric_configs: Iterable[MetricConfig]) -> Dict[str, Metric]: """Create and register metrics from a list of MetricConfigs.""" return self.registry.create_metrics(metric_configs)
[ "Create", "and", "register", "metrics", "from", "a", "list", "of", "MetricConfigs", "." ]
albertodonato/prometheus-aioexporter
python
https://github.com/albertodonato/prometheus-aioexporter/blob/e1b85544ce72bfaae9182597709a2ecede8c8242/prometheus_aioexporter/script.py#L93-L96
[ "def", "create_metrics", "(", "self", ",", "metric_configs", ":", "Iterable", "[", "MetricConfig", "]", ")", "->", "Dict", "[", "str", ",", "Metric", "]", ":", "return", "self", ".", "registry", ".", "create_metrics", "(", "metric_configs", ")" ]
e1b85544ce72bfaae9182597709a2ecede8c8242
test
PrometheusExporterScript._setup_logging
Setup logging for the application and aiohttp.
prometheus_aioexporter/script.py
def _setup_logging(self, log_level: str): """Setup logging for the application and aiohttp.""" level = getattr(logging, log_level) names = ( 'aiohttp.access', 'aiohttp.internal', 'aiohttp.server', 'aiohttp.web', self.name) for name in names: setup_logger(name=name, stream=sys.stderr, level=level)
def _setup_logging(self, log_level: str): """Setup logging for the application and aiohttp.""" level = getattr(logging, log_level) names = ( 'aiohttp.access', 'aiohttp.internal', 'aiohttp.server', 'aiohttp.web', self.name) for name in names: setup_logger(name=name, stream=sys.stderr, level=level)
[ "Setup", "logging", "for", "the", "application", "and", "aiohttp", "." ]
albertodonato/prometheus-aioexporter
python
https://github.com/albertodonato/prometheus-aioexporter/blob/e1b85544ce72bfaae9182597709a2ecede8c8242/prometheus_aioexporter/script.py#L130-L137
[ "def", "_setup_logging", "(", "self", ",", "log_level", ":", "str", ")", ":", "level", "=", "getattr", "(", "logging", ",", "log_level", ")", "names", "=", "(", "'aiohttp.access'", ",", "'aiohttp.internal'", ",", "'aiohttp.server'", ",", "'aiohttp.web'", ",", "self", ".", "name", ")", "for", "name", "in", "names", ":", "setup_logger", "(", "name", "=", "name", ",", "stream", "=", "sys", ".", "stderr", ",", "level", "=", "level", ")" ]
e1b85544ce72bfaae9182597709a2ecede8c8242
test
PrometheusExporterScript._configure_registry
Configure the MetricRegistry.
prometheus_aioexporter/script.py
def _configure_registry(self, include_process_stats: bool = False): """Configure the MetricRegistry.""" if include_process_stats: self.registry.register_additional_collector( ProcessCollector(registry=None))
def _configure_registry(self, include_process_stats: bool = False): """Configure the MetricRegistry.""" if include_process_stats: self.registry.register_additional_collector( ProcessCollector(registry=None))
[ "Configure", "the", "MetricRegistry", "." ]
albertodonato/prometheus-aioexporter
python
https://github.com/albertodonato/prometheus-aioexporter/blob/e1b85544ce72bfaae9182597709a2ecede8c8242/prometheus_aioexporter/script.py#L139-L143
[ "def", "_configure_registry", "(", "self", ",", "include_process_stats", ":", "bool", "=", "False", ")", ":", "if", "include_process_stats", ":", "self", ".", "registry", ".", "register_additional_collector", "(", "ProcessCollector", "(", "registry", "=", "None", ")", ")" ]
e1b85544ce72bfaae9182597709a2ecede8c8242
test
PrometheusExporterScript._get_exporter
Return a :class:`PrometheusExporter` configured with args.
prometheus_aioexporter/script.py
def _get_exporter(self, args: argparse.Namespace) -> PrometheusExporter: """Return a :class:`PrometheusExporter` configured with args.""" exporter = PrometheusExporter( self.name, self.description, args.host, args.port, self.registry) exporter.app.on_startup.append(self.on_application_startup) exporter.app.on_shutdown.append(self.on_application_shutdown) return exporter
def _get_exporter(self, args: argparse.Namespace) -> PrometheusExporter: """Return a :class:`PrometheusExporter` configured with args.""" exporter = PrometheusExporter( self.name, self.description, args.host, args.port, self.registry) exporter.app.on_startup.append(self.on_application_startup) exporter.app.on_shutdown.append(self.on_application_shutdown) return exporter
[ "Return", "a", ":", "class", ":", "PrometheusExporter", "configured", "with", "args", "." ]
albertodonato/prometheus-aioexporter
python
https://github.com/albertodonato/prometheus-aioexporter/blob/e1b85544ce72bfaae9182597709a2ecede8c8242/prometheus_aioexporter/script.py#L145-L151
[ "def", "_get_exporter", "(", "self", ",", "args", ":", "argparse", ".", "Namespace", ")", "->", "PrometheusExporter", ":", "exporter", "=", "PrometheusExporter", "(", "self", ".", "name", ",", "self", ".", "description", ",", "args", ".", "host", ",", "args", ".", "port", ",", "self", ".", "registry", ")", "exporter", ".", "app", ".", "on_startup", ".", "append", "(", "self", ".", "on_application_startup", ")", "exporter", ".", "app", ".", "on_shutdown", ".", "append", "(", "self", ".", "on_application_shutdown", ")", "return", "exporter" ]
e1b85544ce72bfaae9182597709a2ecede8c8242
test
MetricsRegistry.create_metrics
Create Prometheus metrics from a list of MetricConfigs.
prometheus_aioexporter/metric.py
def create_metrics(self, configs: Iterable[MetricConfig]) -> Dict[str, Metric]: """Create Prometheus metrics from a list of MetricConfigs.""" metrics: Dict[str, Metric] = { config.name: self._register_metric(config) for config in configs } self._metrics.update(metrics) return metrics
def create_metrics(self, configs: Iterable[MetricConfig]) -> Dict[str, Metric]: """Create Prometheus metrics from a list of MetricConfigs.""" metrics: Dict[str, Metric] = { config.name: self._register_metric(config) for config in configs } self._metrics.update(metrics) return metrics
[ "Create", "Prometheus", "metrics", "from", "a", "list", "of", "MetricConfigs", "." ]
albertodonato/prometheus-aioexporter
python
https://github.com/albertodonato/prometheus-aioexporter/blob/e1b85544ce72bfaae9182597709a2ecede8c8242/prometheus_aioexporter/metric.py#L80-L88
[ "def", "create_metrics", "(", "self", ",", "configs", ":", "Iterable", "[", "MetricConfig", "]", ")", "->", "Dict", "[", "str", ",", "Metric", "]", ":", "metrics", ":", "Dict", "[", "str", ",", "Metric", "]", "=", "{", "config", ".", "name", ":", "self", ".", "_register_metric", "(", "config", ")", "for", "config", "in", "configs", "}", "self", ".", "_metrics", ".", "update", "(", "metrics", ")", "return", "metrics" ]
e1b85544ce72bfaae9182597709a2ecede8c8242
test
MetricsRegistry.get_metric
Return a metric, optionally configured with labels.
prometheus_aioexporter/metric.py
def get_metric( self, name: str, labels: Union[Dict[str, str], None] = None) -> Metric: """Return a metric, optionally configured with labels.""" metric = self._metrics[name] if labels: return metric.labels(**labels) return metric
def get_metric( self, name: str, labels: Union[Dict[str, str], None] = None) -> Metric: """Return a metric, optionally configured with labels.""" metric = self._metrics[name] if labels: return metric.labels(**labels) return metric
[ "Return", "a", "metric", "optionally", "configured", "with", "labels", "." ]
albertodonato/prometheus-aioexporter
python
https://github.com/albertodonato/prometheus-aioexporter/blob/e1b85544ce72bfaae9182597709a2ecede8c8242/prometheus_aioexporter/metric.py#L90-L98
[ "def", "get_metric", "(", "self", ",", "name", ":", "str", ",", "labels", ":", "Union", "[", "Dict", "[", "str", ",", "str", "]", ",", "None", "]", "=", "None", ")", "->", "Metric", ":", "metric", "=", "self", ".", "_metrics", "[", "name", "]", "if", "labels", ":", "return", "metric", ".", "labels", "(", "*", "*", "labels", ")", "return", "metric" ]
e1b85544ce72bfaae9182597709a2ecede8c8242
test
PrometheusExporter.run
Run the :class:`aiohttp.web.Application` for the exporter.
prometheus_aioexporter/web.py
def run(self): """Run the :class:`aiohttp.web.Application` for the exporter.""" run_app( self.app, host=self.host, port=self.port, print=lambda *args, **kargs: None, access_log_format='%a "%r" %s %b "%{Referrer}i" "%{User-Agent}i"')
def run(self): """Run the :class:`aiohttp.web.Application` for the exporter.""" run_app( self.app, host=self.host, port=self.port, print=lambda *args, **kargs: None, access_log_format='%a "%r" %s %b "%{Referrer}i" "%{User-Agent}i"')
[ "Run", "the", ":", "class", ":", "aiohttp", ".", "web", ".", "Application", "for", "the", "exporter", "." ]
albertodonato/prometheus-aioexporter
python
https://github.com/albertodonato/prometheus-aioexporter/blob/e1b85544ce72bfaae9182597709a2ecede8c8242/prometheus_aioexporter/web.py#L62-L69
[ "def", "run", "(", "self", ")", ":", "run_app", "(", "self", ".", "app", ",", "host", "=", "self", ".", "host", ",", "port", "=", "self", ".", "port", ",", "print", "=", "lambda", "*", "args", ",", "*", "*", "kargs", ":", "None", ",", "access_log_format", "=", "'%a \"%r\" %s %b \"%{Referrer}i\" \"%{User-Agent}i\"'", ")" ]
e1b85544ce72bfaae9182597709a2ecede8c8242
test
PrometheusExporter._make_application
Setup an :class:`aiohttp.web.Application`.
prometheus_aioexporter/web.py
def _make_application(self) -> Application: """Setup an :class:`aiohttp.web.Application`.""" app = Application() app['exporter'] = self app.router.add_get('/', self._handle_home) app.router.add_get('/metrics', self._handle_metrics) app.on_startup.append(self._log_startup_message) return app
def _make_application(self) -> Application: """Setup an :class:`aiohttp.web.Application`.""" app = Application() app['exporter'] = self app.router.add_get('/', self._handle_home) app.router.add_get('/metrics', self._handle_metrics) app.on_startup.append(self._log_startup_message) return app
[ "Setup", "an", ":", "class", ":", "aiohttp", ".", "web", ".", "Application", "." ]
albertodonato/prometheus-aioexporter
python
https://github.com/albertodonato/prometheus-aioexporter/blob/e1b85544ce72bfaae9182597709a2ecede8c8242/prometheus_aioexporter/web.py#L71-L78
[ "def", "_make_application", "(", "self", ")", "->", "Application", ":", "app", "=", "Application", "(", ")", "app", "[", "'exporter'", "]", "=", "self", "app", ".", "router", ".", "add_get", "(", "'/'", ",", "self", ".", "_handle_home", ")", "app", ".", "router", ".", "add_get", "(", "'/metrics'", ",", "self", ".", "_handle_metrics", ")", "app", ".", "on_startup", ".", "append", "(", "self", ".", "_log_startup_message", ")", "return", "app" ]
e1b85544ce72bfaae9182597709a2ecede8c8242
test
PrometheusExporter._handle_home
Home page request handler.
prometheus_aioexporter/web.py
async def _handle_home(self, request: Request) -> Response: """Home page request handler.""" if self.description: title = f'{self.name} - {self.description}' else: title = self.name text = dedent( f'''<!DOCTYPE html> <html> <head> <title>{title}</title> </head> <body> <h1>{title}</h1> <p> Metric are exported at the <a href="/metrics">/metrics</a> endpoint. </p> </body> </html> ''') return Response(content_type='text/html', text=text)
async def _handle_home(self, request: Request) -> Response: """Home page request handler.""" if self.description: title = f'{self.name} - {self.description}' else: title = self.name text = dedent( f'''<!DOCTYPE html> <html> <head> <title>{title}</title> </head> <body> <h1>{title}</h1> <p> Metric are exported at the <a href="/metrics">/metrics</a> endpoint. </p> </body> </html> ''') return Response(content_type='text/html', text=text)
[ "Home", "page", "request", "handler", "." ]
albertodonato/prometheus-aioexporter
python
https://github.com/albertodonato/prometheus-aioexporter/blob/e1b85544ce72bfaae9182597709a2ecede8c8242/prometheus_aioexporter/web.py#L84-L106
[ "async", "def", "_handle_home", "(", "self", ",", "request", ":", "Request", ")", "->", "Response", ":", "if", "self", ".", "description", ":", "title", "=", "f'{self.name} - {self.description}'", "else", ":", "title", "=", "self", ".", "name", "text", "=", "dedent", "(", "f'''<!DOCTYPE html>\n <html>\n <head>\n <title>{title}</title>\n </head>\n <body>\n <h1>{title}</h1>\n <p>\n Metric are exported at the\n <a href=\"/metrics\">/metrics</a> endpoint.\n </p>\n </body>\n </html>\n '''", ")", "return", "Response", "(", "content_type", "=", "'text/html'", ",", "text", "=", "text", ")" ]
e1b85544ce72bfaae9182597709a2ecede8c8242
test
PrometheusExporter._handle_metrics
Handler for metrics.
prometheus_aioexporter/web.py
async def _handle_metrics(self, request: Request) -> Response: """Handler for metrics.""" if self._update_handler: await self._update_handler(self.registry.get_metrics()) response = Response(body=self.registry.generate_metrics()) response.content_type = CONTENT_TYPE_LATEST return response
async def _handle_metrics(self, request: Request) -> Response: """Handler for metrics.""" if self._update_handler: await self._update_handler(self.registry.get_metrics()) response = Response(body=self.registry.generate_metrics()) response.content_type = CONTENT_TYPE_LATEST return response
[ "Handler", "for", "metrics", "." ]
albertodonato/prometheus-aioexporter
python
https://github.com/albertodonato/prometheus-aioexporter/blob/e1b85544ce72bfaae9182597709a2ecede8c8242/prometheus_aioexporter/web.py#L108-L114
[ "async", "def", "_handle_metrics", "(", "self", ",", "request", ":", "Request", ")", "->", "Response", ":", "if", "self", ".", "_update_handler", ":", "await", "self", ".", "_update_handler", "(", "self", ".", "registry", ".", "get_metrics", "(", ")", ")", "response", "=", "Response", "(", "body", "=", "self", ".", "registry", ".", "generate_metrics", "(", ")", ")", "response", ".", "content_type", "=", "CONTENT_TYPE_LATEST", "return", "response" ]
e1b85544ce72bfaae9182597709a2ecede8c8242
test
wa
A free-text query resolver by Wolfram|Alpha. Returns the first result, if available.
wolframalpha/pmxbot.py
def wa(client, event, channel, nick, rest): """ A free-text query resolver by Wolfram|Alpha. Returns the first result, if available. """ client = wolframalpha.Client(pmxbot.config['Wolfram|Alpha API key']) res = client.query(rest) return next(res.results).text
def wa(client, event, channel, nick, rest): """ A free-text query resolver by Wolfram|Alpha. Returns the first result, if available. """ client = wolframalpha.Client(pmxbot.config['Wolfram|Alpha API key']) res = client.query(rest) return next(res.results).text
[ "A", "free", "-", "text", "query", "resolver", "by", "Wolfram|Alpha", ".", "Returns", "the", "first", "result", "if", "available", "." ]
jaraco/wolframalpha
python
https://github.com/jaraco/wolframalpha/blob/50bf2e047b698e308a9a88770a23e7e210aa5bcb/wolframalpha/pmxbot.py#L11-L18
[ "def", "wa", "(", "client", ",", "event", ",", "channel", ",", "nick", ",", "rest", ")", ":", "client", "=", "wolframalpha", ".", "Client", "(", "pmxbot", ".", "config", "[", "'Wolfram|Alpha API key'", "]", ")", "res", "=", "client", ".", "query", "(", "rest", ")", "return", "next", "(", "res", ".", "results", ")", ".", "text" ]
50bf2e047b698e308a9a88770a23e7e210aa5bcb
test
fix_HTTPMessage
Python 2 uses a deprecated method signature and doesn't provide the forward compatibility. Add it.
wolframalpha/compat.py
def fix_HTTPMessage(): """ Python 2 uses a deprecated method signature and doesn't provide the forward compatibility. Add it. """ if six.PY3: return http_client.HTTPMessage.get_content_type = http_client.HTTPMessage.gettype http_client.HTTPMessage.get_param = http_client.HTTPMessage.getparam
def fix_HTTPMessage(): """ Python 2 uses a deprecated method signature and doesn't provide the forward compatibility. Add it. """ if six.PY3: return http_client.HTTPMessage.get_content_type = http_client.HTTPMessage.gettype http_client.HTTPMessage.get_param = http_client.HTTPMessage.getparam
[ "Python", "2", "uses", "a", "deprecated", "method", "signature", "and", "doesn", "t", "provide", "the", "forward", "compatibility", ".", "Add", "it", "." ]
jaraco/wolframalpha
python
https://github.com/jaraco/wolframalpha/blob/50bf2e047b698e308a9a88770a23e7e210aa5bcb/wolframalpha/compat.py#L5-L15
[ "def", "fix_HTTPMessage", "(", ")", ":", "if", "six", ".", "PY3", ":", "return", "http_client", ".", "HTTPMessage", ".", "get_content_type", "=", "http_client", ".", "HTTPMessage", ".", "gettype", "http_client", ".", "HTTPMessage", ".", "get_param", "=", "http_client", ".", "HTTPMessage", ".", "getparam" ]
50bf2e047b698e308a9a88770a23e7e210aa5bcb
test
Client.query
Query Wolfram|Alpha using the v2.0 API Allows for arbitrary parameters to be passed in the query. For example, to pass assumptions: client.query(input='pi', assumption='*C.pi-_*NamedConstant-') To pass multiple assumptions, pass multiple items as params: params = ( ('assumption', '*C.pi-_*NamedConstant-'), ('assumption', 'DateOrder_**Day.Month.Year--'), ) client.query(input='pi', params=params) For more details on Assumptions, see https://products.wolframalpha.com/api/documentation.html#6
wolframalpha/__init__.py
def query(self, input, params=(), **kwargs): """ Query Wolfram|Alpha using the v2.0 API Allows for arbitrary parameters to be passed in the query. For example, to pass assumptions: client.query(input='pi', assumption='*C.pi-_*NamedConstant-') To pass multiple assumptions, pass multiple items as params: params = ( ('assumption', '*C.pi-_*NamedConstant-'), ('assumption', 'DateOrder_**Day.Month.Year--'), ) client.query(input='pi', params=params) For more details on Assumptions, see https://products.wolframalpha.com/api/documentation.html#6 """ data = dict( input=input, appid=self.app_id, ) data = itertools.chain(params, data.items(), kwargs.items()) query = urllib.parse.urlencode(tuple(data)) url = 'https://api.wolframalpha.com/v2/query?' + query resp = urllib.request.urlopen(url) assert resp.headers.get_content_type() == 'text/xml' assert resp.headers.get_param('charset') == 'utf-8' return Result(resp)
def query(self, input, params=(), **kwargs): """ Query Wolfram|Alpha using the v2.0 API Allows for arbitrary parameters to be passed in the query. For example, to pass assumptions: client.query(input='pi', assumption='*C.pi-_*NamedConstant-') To pass multiple assumptions, pass multiple items as params: params = ( ('assumption', '*C.pi-_*NamedConstant-'), ('assumption', 'DateOrder_**Day.Month.Year--'), ) client.query(input='pi', params=params) For more details on Assumptions, see https://products.wolframalpha.com/api/documentation.html#6 """ data = dict( input=input, appid=self.app_id, ) data = itertools.chain(params, data.items(), kwargs.items()) query = urllib.parse.urlencode(tuple(data)) url = 'https://api.wolframalpha.com/v2/query?' + query resp = urllib.request.urlopen(url) assert resp.headers.get_content_type() == 'text/xml' assert resp.headers.get_param('charset') == 'utf-8' return Result(resp)
[ "Query", "Wolfram|Alpha", "using", "the", "v2", ".", "0", "API" ]
jaraco/wolframalpha
python
https://github.com/jaraco/wolframalpha/blob/50bf2e047b698e308a9a88770a23e7e210aa5bcb/wolframalpha/__init__.py#L24-L56
[ "def", "query", "(", "self", ",", "input", ",", "params", "=", "(", ")", ",", "*", "*", "kwargs", ")", ":", "data", "=", "dict", "(", "input", "=", "input", ",", "appid", "=", "self", ".", "app_id", ",", ")", "data", "=", "itertools", ".", "chain", "(", "params", ",", "data", ".", "items", "(", ")", ",", "kwargs", ".", "items", "(", ")", ")", "query", "=", "urllib", ".", "parse", ".", "urlencode", "(", "tuple", "(", "data", ")", ")", "url", "=", "'https://api.wolframalpha.com/v2/query?'", "+", "query", "resp", "=", "urllib", ".", "request", ".", "urlopen", "(", "url", ")", "assert", "resp", ".", "headers", ".", "get_content_type", "(", ")", "==", "'text/xml'", "assert", "resp", ".", "headers", ".", "get_param", "(", "'charset'", ")", "==", "'utf-8'", "return", "Result", "(", "resp", ")" ]
50bf2e047b698e308a9a88770a23e7e210aa5bcb
test
Result.info
The pods, assumptions, and warnings of this result.
wolframalpha/__init__.py
def info(self): """ The pods, assumptions, and warnings of this result. """ return itertools.chain(self.pods, self.assumptions, self.warnings)
def info(self): """ The pods, assumptions, and warnings of this result. """ return itertools.chain(self.pods, self.assumptions, self.warnings)
[ "The", "pods", "assumptions", "and", "warnings", "of", "this", "result", "." ]
jaraco/wolframalpha
python
https://github.com/jaraco/wolframalpha/blob/50bf2e047b698e308a9a88770a23e7e210aa5bcb/wolframalpha/__init__.py#L181-L185
[ "def", "info", "(", "self", ")", ":", "return", "itertools", ".", "chain", "(", "self", ".", "pods", ",", "self", ".", "assumptions", ",", "self", ".", "warnings", ")" ]
50bf2e047b698e308a9a88770a23e7e210aa5bcb
test
Result.results
The pods that hold the response to a simple, discrete query.
wolframalpha/__init__.py
def results(self): """ The pods that hold the response to a simple, discrete query. """ return ( pod for pod in self.pods if pod.primary or pod.title == 'Result' )
def results(self): """ The pods that hold the response to a simple, discrete query. """ return ( pod for pod in self.pods if pod.primary or pod.title == 'Result' )
[ "The", "pods", "that", "hold", "the", "response", "to", "a", "simple", "discrete", "query", "." ]
jaraco/wolframalpha
python
https://github.com/jaraco/wolframalpha/blob/50bf2e047b698e308a9a88770a23e7e210aa5bcb/wolframalpha/__init__.py#L206-L215
[ "def", "results", "(", "self", ")", ":", "return", "(", "pod", "for", "pod", "in", "self", ".", "pods", "if", "pod", ".", "primary", "or", "pod", ".", "title", "==", "'Result'", ")" ]
50bf2e047b698e308a9a88770a23e7e210aa5bcb
test
ApiClient.encode
Add request content data to request body, set Content-type header. Should be overridden by subclasses if not using JSON encoding. Args: request (HTTPRequest): The request object. data (dict, None): Data to be encoded. Returns: HTTPRequest: The request object.
nerd/client.py
def encode(request, data): """ Add request content data to request body, set Content-type header. Should be overridden by subclasses if not using JSON encoding. Args: request (HTTPRequest): The request object. data (dict, None): Data to be encoded. Returns: HTTPRequest: The request object. """ if data is None: return request request.add_header('Content-Type', 'application/json') request.data = json.dumps(data) return request
def encode(request, data): """ Add request content data to request body, set Content-type header. Should be overridden by subclasses if not using JSON encoding. Args: request (HTTPRequest): The request object. data (dict, None): Data to be encoded. Returns: HTTPRequest: The request object. """ if data is None: return request request.add_header('Content-Type', 'application/json') request.data = json.dumps(data) return request
[ "Add", "request", "content", "data", "to", "request", "body", "set", "Content", "-", "type", "header", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/client.py#L45-L63
[ "def", "encode", "(", "request", ",", "data", ")", ":", "if", "data", "is", "None", ":", "return", "request", "request", ".", "add_header", "(", "'Content-Type'", ",", "'application/json'", ")", "request", ".", "data", "=", "json", ".", "dumps", "(", "data", ")", "return", "request" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
ApiClient.call_api
Call API. This returns object containing data, with error details if applicable. Args: method (str): The HTTP method to use. url (str): Resource location relative to the base URL. headers (dict or None): Extra request headers to set. params (dict or None): Query-string parameters. data (dict or None): Request body contents for POST or PUT requests. files (dict or None: Files to be passed to the request. timeout (int): Maximum time before timing out. Returns: ResultParser or ErrorParser.
nerd/client.py
def call_api( self, method, url, headers=None, params=None, data=None, files=None, timeout=None, ): """ Call API. This returns object containing data, with error details if applicable. Args: method (str): The HTTP method to use. url (str): Resource location relative to the base URL. headers (dict or None): Extra request headers to set. params (dict or None): Query-string parameters. data (dict or None): Request body contents for POST or PUT requests. files (dict or None: Files to be passed to the request. timeout (int): Maximum time before timing out. Returns: ResultParser or ErrorParser. """ method = method.upper() headers = deepcopy(headers) or {} headers['Accept'] = self.accept_type params = deepcopy(params) or {} data = data or {} files = files or {} if self.username and self.api_key: params.update(self.get_credentials()) url = urljoin(self.base_url, url) r = requests.request( method, url, headers=headers, params=params, files=files, data=data, timeout=timeout, ) return r, r.status_code
def call_api( self, method, url, headers=None, params=None, data=None, files=None, timeout=None, ): """ Call API. This returns object containing data, with error details if applicable. Args: method (str): The HTTP method to use. url (str): Resource location relative to the base URL. headers (dict or None): Extra request headers to set. params (dict or None): Query-string parameters. data (dict or None): Request body contents for POST or PUT requests. files (dict or None: Files to be passed to the request. timeout (int): Maximum time before timing out. Returns: ResultParser or ErrorParser. """ method = method.upper() headers = deepcopy(headers) or {} headers['Accept'] = self.accept_type params = deepcopy(params) or {} data = data or {} files = files or {} if self.username and self.api_key: params.update(self.get_credentials()) url = urljoin(self.base_url, url) r = requests.request( method, url, headers=headers, params=params, files=files, data=data, timeout=timeout, ) return r, r.status_code
[ "Call", "API", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/client.py#L93-L141
[ "def", "call_api", "(", "self", ",", "method", ",", "url", ",", "headers", "=", "None", ",", "params", "=", "None", ",", "data", "=", "None", ",", "files", "=", "None", ",", "timeout", "=", "None", ",", ")", ":", "method", "=", "method", ".", "upper", "(", ")", "headers", "=", "deepcopy", "(", "headers", ")", "or", "{", "}", "headers", "[", "'Accept'", "]", "=", "self", ".", "accept_type", "params", "=", "deepcopy", "(", "params", ")", "or", "{", "}", "data", "=", "data", "or", "{", "}", "files", "=", "files", "or", "{", "}", "if", "self", ".", "username", "and", "self", ".", "api_key", ":", "params", ".", "update", "(", "self", ".", "get_credentials", "(", ")", ")", "url", "=", "urljoin", "(", "self", ".", "base_url", ",", "url", ")", "r", "=", "requests", ".", "request", "(", "method", ",", "url", ",", "headers", "=", "headers", ",", "params", "=", "params", ",", "files", "=", "files", ",", "data", "=", "data", ",", "timeout", "=", "timeout", ",", ")", "return", "r", ",", "r", ".", "status_code" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
ApiClient.get
Call the API with a GET request. Args: url (str): Resource location relative to the base URL. params (dict or None): Query-string parameters. Returns: ResultParser or ErrorParser.
nerd/client.py
def get(self, url, params=None, **kwargs): """ Call the API with a GET request. Args: url (str): Resource location relative to the base URL. params (dict or None): Query-string parameters. Returns: ResultParser or ErrorParser. """ return self.call_api( "GET", url, params=params, **kwargs )
def get(self, url, params=None, **kwargs): """ Call the API with a GET request. Args: url (str): Resource location relative to the base URL. params (dict or None): Query-string parameters. Returns: ResultParser or ErrorParser. """ return self.call_api( "GET", url, params=params, **kwargs )
[ "Call", "the", "API", "with", "a", "GET", "request", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/client.py#L143-L158
[ "def", "get", "(", "self", ",", "url", ",", "params", "=", "None", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "call_api", "(", "\"GET\"", ",", "url", ",", "params", "=", "params", ",", "*", "*", "kwargs", ")" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
ApiClient.delete
Call the API with a DELETE request. Args: url (str): Resource location relative to the base URL. params (dict or None): Query-string parameters. Returns: ResultParser or ErrorParser.
nerd/client.py
def delete(self, url, params=None, **kwargs): """ Call the API with a DELETE request. Args: url (str): Resource location relative to the base URL. params (dict or None): Query-string parameters. Returns: ResultParser or ErrorParser. """ return self.call_api( "DELETE", url, params=params, **kwargs )
def delete(self, url, params=None, **kwargs): """ Call the API with a DELETE request. Args: url (str): Resource location relative to the base URL. params (dict or None): Query-string parameters. Returns: ResultParser or ErrorParser. """ return self.call_api( "DELETE", url, params=params, **kwargs )
[ "Call", "the", "API", "with", "a", "DELETE", "request", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/client.py#L160-L175
[ "def", "delete", "(", "self", ",", "url", ",", "params", "=", "None", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "call_api", "(", "\"DELETE\"", ",", "url", ",", "params", "=", "params", ",", "*", "*", "kwargs", ")" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
ApiClient.put
Call the API with a PUT request. Args: url (str): Resource location relative to the base URL. params (dict or None): Query-string parameters. data (dict or None): Request body contents. files (dict or None: Files to be passed to the request. Returns: An instance of ResultParser or ErrorParser.
nerd/client.py
def put(self, url, params=None, data=None, files=None, **kwargs): """ Call the API with a PUT request. Args: url (str): Resource location relative to the base URL. params (dict or None): Query-string parameters. data (dict or None): Request body contents. files (dict or None: Files to be passed to the request. Returns: An instance of ResultParser or ErrorParser. """ return self.call_api( "PUT", url, params=params, data=data, files=files, **kwargs )
def put(self, url, params=None, data=None, files=None, **kwargs): """ Call the API with a PUT request. Args: url (str): Resource location relative to the base URL. params (dict or None): Query-string parameters. data (dict or None): Request body contents. files (dict or None: Files to be passed to the request. Returns: An instance of ResultParser or ErrorParser. """ return self.call_api( "PUT", url, params=params, data=data, files=files, **kwargs )
[ "Call", "the", "API", "with", "a", "PUT", "request", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/client.py#L177-L196
[ "def", "put", "(", "self", ",", "url", ",", "params", "=", "None", ",", "data", "=", "None", ",", "files", "=", "None", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "call_api", "(", "\"PUT\"", ",", "url", ",", "params", "=", "params", ",", "data", "=", "data", ",", "files", "=", "files", ",", "*", "*", "kwargs", ")" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
ApiClient.post
Call the API with a POST request. Args: url (str): Resource location relative to the base URL. params (dict or None): Query-string parameters. data (dict or None): Request body contents. files (dict or None: Files to be passed to the request. Returns: An instance of ResultParser or ErrorParser.
nerd/client.py
def post(self, url, params=None, data=None, files=None, **kwargs): """ Call the API with a POST request. Args: url (str): Resource location relative to the base URL. params (dict or None): Query-string parameters. data (dict or None): Request body contents. files (dict or None: Files to be passed to the request. Returns: An instance of ResultParser or ErrorParser. """ return self.call_api( "POST", url, params=params, data=data, files=files, **kwargs )
def post(self, url, params=None, data=None, files=None, **kwargs): """ Call the API with a POST request. Args: url (str): Resource location relative to the base URL. params (dict or None): Query-string parameters. data (dict or None): Request body contents. files (dict or None: Files to be passed to the request. Returns: An instance of ResultParser or ErrorParser. """ return self.call_api( "POST", url, params=params, data=data, files=files, **kwargs )
[ "Call", "the", "API", "with", "a", "POST", "request", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/client.py#L198-L217
[ "def", "post", "(", "self", ",", "url", ",", "params", "=", "None", ",", "data", "=", "None", ",", "files", "=", "None", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "call_api", "(", "\"POST\"", ",", "url", ",", "params", "=", "params", ",", "data", "=", "data", ",", "files", "=", "files", ",", "*", "*", "kwargs", ")" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
NerdClient._process_query
Process query recursively, if the text is too long, it is split and processed bit a bit. Args: query (sdict): Text to be processed. prepared (bool): True when the query is ready to be submitted via POST request. Returns: str: Body ready to be submitted to the API.
nerd/nerd_client.py
def _process_query(self, query, prepared=False): """ Process query recursively, if the text is too long, it is split and processed bit a bit. Args: query (sdict): Text to be processed. prepared (bool): True when the query is ready to be submitted via POST request. Returns: str: Body ready to be submitted to the API. """ # Exit condition and POST if prepared is True: files = {'query': str(query)} logger.debug('About to submit the following query {}'.format(query)) res, status = self.post( self.disambiguate_service, files=files, headers={'Accept': 'application/json'}, ) if status == 200: return self.decode(res), status else: logger.debug('Disambiguation failed.') return None, status text = query['text'] sentence_coordinates = [ { "offsetStart": 0, "offsetEnd": len(text) } ] total_nb_sentences = len(sentence_coordinates) # Sentences from text. sentences_groups = [] if len(text) > self.max_text_length: res, status_code = self.segment(text) if status_code == 200: sentence_coordinates = res['sentences'] total_nb_sentences = len(sentence_coordinates) else: logger.error('Error during the segmentation of the text.') logger.debug( 'Text too long, split in {} sentences; building groups of {} ' 'sentences.'.format( total_nb_sentences, self.sentences_per_group ) ) sentences_groups = self._group_sentences( total_nb_sentences, self.sentences_per_group ) else: query['sentence'] = "true" if total_nb_sentences > 1: query['sentences'] = sentence_coordinates if len(sentences_groups) > 0: for group in sentences_groups: query['processSentence'] = group res, status_code = self._process_query(query, prepared=True) if status_code == 200: if 'entities' in res: query['entities'] = res[u'entities'] query['language'] = res[u'language'] else: logger.error( "Error when processing the query {}".format(query) ) return None, status_code else: res, status_code = self._process_query(query, prepared=True) if status_code == 200: query['language'] = res[u'language'] if 'entities' in res: query['entities'] = res[u'entities'] else: logger.error("Error when processing the query {}".format(query)) return None, status_code return query, status_code
def _process_query(self, query, prepared=False): """ Process query recursively, if the text is too long, it is split and processed bit a bit. Args: query (sdict): Text to be processed. prepared (bool): True when the query is ready to be submitted via POST request. Returns: str: Body ready to be submitted to the API. """ # Exit condition and POST if prepared is True: files = {'query': str(query)} logger.debug('About to submit the following query {}'.format(query)) res, status = self.post( self.disambiguate_service, files=files, headers={'Accept': 'application/json'}, ) if status == 200: return self.decode(res), status else: logger.debug('Disambiguation failed.') return None, status text = query['text'] sentence_coordinates = [ { "offsetStart": 0, "offsetEnd": len(text) } ] total_nb_sentences = len(sentence_coordinates) # Sentences from text. sentences_groups = [] if len(text) > self.max_text_length: res, status_code = self.segment(text) if status_code == 200: sentence_coordinates = res['sentences'] total_nb_sentences = len(sentence_coordinates) else: logger.error('Error during the segmentation of the text.') logger.debug( 'Text too long, split in {} sentences; building groups of {} ' 'sentences.'.format( total_nb_sentences, self.sentences_per_group ) ) sentences_groups = self._group_sentences( total_nb_sentences, self.sentences_per_group ) else: query['sentence'] = "true" if total_nb_sentences > 1: query['sentences'] = sentence_coordinates if len(sentences_groups) > 0: for group in sentences_groups: query['processSentence'] = group res, status_code = self._process_query(query, prepared=True) if status_code == 200: if 'entities' in res: query['entities'] = res[u'entities'] query['language'] = res[u'language'] else: logger.error( "Error when processing the query {}".format(query) ) return None, status_code else: res, status_code = self._process_query(query, prepared=True) if status_code == 200: query['language'] = res[u'language'] if 'entities' in res: query['entities'] = res[u'entities'] else: logger.error("Error when processing the query {}".format(query)) return None, status_code return query, status_code
[ "Process", "query", "recursively", "if", "the", "text", "is", "too", "long", "it", "is", "split", "and", "processed", "bit", "a", "bit", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/nerd_client.py#L39-L133
[ "def", "_process_query", "(", "self", ",", "query", ",", "prepared", "=", "False", ")", ":", "# Exit condition and POST", "if", "prepared", "is", "True", ":", "files", "=", "{", "'query'", ":", "str", "(", "query", ")", "}", "logger", ".", "debug", "(", "'About to submit the following query {}'", ".", "format", "(", "query", ")", ")", "res", ",", "status", "=", "self", ".", "post", "(", "self", ".", "disambiguate_service", ",", "files", "=", "files", ",", "headers", "=", "{", "'Accept'", ":", "'application/json'", "}", ",", ")", "if", "status", "==", "200", ":", "return", "self", ".", "decode", "(", "res", ")", ",", "status", "else", ":", "logger", ".", "debug", "(", "'Disambiguation failed.'", ")", "return", "None", ",", "status", "text", "=", "query", "[", "'text'", "]", "sentence_coordinates", "=", "[", "{", "\"offsetStart\"", ":", "0", ",", "\"offsetEnd\"", ":", "len", "(", "text", ")", "}", "]", "total_nb_sentences", "=", "len", "(", "sentence_coordinates", ")", "# Sentences from text.", "sentences_groups", "=", "[", "]", "if", "len", "(", "text", ")", ">", "self", ".", "max_text_length", ":", "res", ",", "status_code", "=", "self", ".", "segment", "(", "text", ")", "if", "status_code", "==", "200", ":", "sentence_coordinates", "=", "res", "[", "'sentences'", "]", "total_nb_sentences", "=", "len", "(", "sentence_coordinates", ")", "else", ":", "logger", ".", "error", "(", "'Error during the segmentation of the text.'", ")", "logger", ".", "debug", "(", "'Text too long, split in {} sentences; building groups of {} '", "'sentences.'", ".", "format", "(", "total_nb_sentences", ",", "self", ".", "sentences_per_group", ")", ")", "sentences_groups", "=", "self", ".", "_group_sentences", "(", "total_nb_sentences", ",", "self", ".", "sentences_per_group", ")", "else", ":", "query", "[", "'sentence'", "]", "=", "\"true\"", "if", "total_nb_sentences", ">", "1", ":", "query", "[", "'sentences'", "]", "=", "sentence_coordinates", "if", "len", "(", "sentences_groups", ")", ">", "0", ":", "for", "group", "in", "sentences_groups", ":", "query", "[", "'processSentence'", "]", "=", "group", "res", ",", "status_code", "=", "self", ".", "_process_query", "(", "query", ",", "prepared", "=", "True", ")", "if", "status_code", "==", "200", ":", "if", "'entities'", "in", "res", ":", "query", "[", "'entities'", "]", "=", "res", "[", "u'entities'", "]", "query", "[", "'language'", "]", "=", "res", "[", "u'language'", "]", "else", ":", "logger", ".", "error", "(", "\"Error when processing the query {}\"", ".", "format", "(", "query", ")", ")", "return", "None", ",", "status_code", "else", ":", "res", ",", "status_code", "=", "self", ".", "_process_query", "(", "query", ",", "prepared", "=", "True", ")", "if", "status_code", "==", "200", ":", "query", "[", "'language'", "]", "=", "res", "[", "u'language'", "]", "if", "'entities'", "in", "res", ":", "query", "[", "'entities'", "]", "=", "res", "[", "u'entities'", "]", "else", ":", "logger", ".", "error", "(", "\"Error when processing the query {}\"", ".", "format", "(", "query", ")", ")", "return", "None", ",", "status_code", "return", "query", ",", "status_code" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
NerdClient._group_sentences
Split sentences in groups, given a specific group length. Args: total_nb_sentences (int): Total available sentences. group_length (int): Limit of length for each group. Returns: list: Contains groups (lists) of sentences.
nerd/nerd_client.py
def _group_sentences(total_nb_sentences, group_length): """ Split sentences in groups, given a specific group length. Args: total_nb_sentences (int): Total available sentences. group_length (int): Limit of length for each group. Returns: list: Contains groups (lists) of sentences. """ sentences_groups = [] current_sentence_group = [] for i in range(0, total_nb_sentences): if i % group_length == 0: if len(current_sentence_group) > 0: sentences_groups.append(current_sentence_group) current_sentence_group = [i] else: current_sentence_group.append(i) if len(current_sentence_group) > 0: sentences_groups.append(current_sentence_group) return sentences_groups
def _group_sentences(total_nb_sentences, group_length): """ Split sentences in groups, given a specific group length. Args: total_nb_sentences (int): Total available sentences. group_length (int): Limit of length for each group. Returns: list: Contains groups (lists) of sentences. """ sentences_groups = [] current_sentence_group = [] for i in range(0, total_nb_sentences): if i % group_length == 0: if len(current_sentence_group) > 0: sentences_groups.append(current_sentence_group) current_sentence_group = [i] else: current_sentence_group.append(i) if len(current_sentence_group) > 0: sentences_groups.append(current_sentence_group) return sentences_groups
[ "Split", "sentences", "in", "groups", "given", "a", "specific", "group", "length", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/nerd_client.py#L136-L160
[ "def", "_group_sentences", "(", "total_nb_sentences", ",", "group_length", ")", ":", "sentences_groups", "=", "[", "]", "current_sentence_group", "=", "[", "]", "for", "i", "in", "range", "(", "0", ",", "total_nb_sentences", ")", ":", "if", "i", "%", "group_length", "==", "0", ":", "if", "len", "(", "current_sentence_group", ")", ">", "0", ":", "sentences_groups", ".", "append", "(", "current_sentence_group", ")", "current_sentence_group", "=", "[", "i", "]", "else", ":", "current_sentence_group", ".", "append", "(", "i", ")", "if", "len", "(", "current_sentence_group", ")", ">", "0", ":", "sentences_groups", ".", "append", "(", "current_sentence_group", ")", "return", "sentences_groups" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
NerdClient.disambiguate_pdf
Call the disambiguation service in order to process a pdf file . Args: pdf (file): PDF file to be disambiguated. language (str): language of text (if known) Returns: dict, int: API response and API status.
nerd/nerd_client.py
def disambiguate_pdf(self, file, language=None, entities=None): """ Call the disambiguation service in order to process a pdf file . Args: pdf (file): PDF file to be disambiguated. language (str): language of text (if known) Returns: dict, int: API response and API status. """ body = { "customisation": "generic" } if language: body['language'] = {"lang": language} if entities: body['entities'] = entities files = { 'query': str(body), 'file': ( file, open(file, 'rb'), 'application/pdf', {'Expires': '0'} ) } res, status = self.post( self.disambiguate_service, files=files, headers={'Accept': 'application/json'}, ) if status != 200: logger.debug('Disambiguation failed with error ' + str(status)) return self.decode(res), status
def disambiguate_pdf(self, file, language=None, entities=None): """ Call the disambiguation service in order to process a pdf file . Args: pdf (file): PDF file to be disambiguated. language (str): language of text (if known) Returns: dict, int: API response and API status. """ body = { "customisation": "generic" } if language: body['language'] = {"lang": language} if entities: body['entities'] = entities files = { 'query': str(body), 'file': ( file, open(file, 'rb'), 'application/pdf', {'Expires': '0'} ) } res, status = self.post( self.disambiguate_service, files=files, headers={'Accept': 'application/json'}, ) if status != 200: logger.debug('Disambiguation failed with error ' + str(status)) return self.decode(res), status
[ "Call", "the", "disambiguation", "service", "in", "order", "to", "process", "a", "pdf", "file", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/nerd_client.py#L162-L202
[ "def", "disambiguate_pdf", "(", "self", ",", "file", ",", "language", "=", "None", ",", "entities", "=", "None", ")", ":", "body", "=", "{", "\"customisation\"", ":", "\"generic\"", "}", "if", "language", ":", "body", "[", "'language'", "]", "=", "{", "\"lang\"", ":", "language", "}", "if", "entities", ":", "body", "[", "'entities'", "]", "=", "entities", "files", "=", "{", "'query'", ":", "str", "(", "body", ")", ",", "'file'", ":", "(", "file", ",", "open", "(", "file", ",", "'rb'", ")", ",", "'application/pdf'", ",", "{", "'Expires'", ":", "'0'", "}", ")", "}", "res", ",", "status", "=", "self", ".", "post", "(", "self", ".", "disambiguate_service", ",", "files", "=", "files", ",", "headers", "=", "{", "'Accept'", ":", "'application/json'", "}", ",", ")", "if", "status", "!=", "200", ":", "logger", ".", "debug", "(", "'Disambiguation failed with error '", "+", "str", "(", "status", ")", ")", "return", "self", ".", "decode", "(", "res", ")", ",", "status" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
NerdClient.disambiguate_terms
Call the disambiguation service in order to get meanings. Args: terms (obj): list of objects of term, weight language (str): language of text, english if not specified entities (list): list of entities or mentions to be supplied by the user. Returns: dict, int: API response and API status.
nerd/nerd_client.py
def disambiguate_terms(self, terms, language="en", entities=None): """ Call the disambiguation service in order to get meanings. Args: terms (obj): list of objects of term, weight language (str): language of text, english if not specified entities (list): list of entities or mentions to be supplied by the user. Returns: dict, int: API response and API status. """ body = { "termVector": terms, "entities": [], "onlyNER": "false", "customisation": "generic" } body['language'] = {"lang": language} if entities: body['entities'] = entities files = {'query': str(body)} logger.debug('About to submit the following query {}'.format(body)) res, status = self.post( self.disambiguate_service, files=files, headers={'Accept': 'application/json'}, ) if status == 200: return self.decode(res), status else: logger.debug('Disambiguation failed.') return None, status
def disambiguate_terms(self, terms, language="en", entities=None): """ Call the disambiguation service in order to get meanings. Args: terms (obj): list of objects of term, weight language (str): language of text, english if not specified entities (list): list of entities or mentions to be supplied by the user. Returns: dict, int: API response and API status. """ body = { "termVector": terms, "entities": [], "onlyNER": "false", "customisation": "generic" } body['language'] = {"lang": language} if entities: body['entities'] = entities files = {'query': str(body)} logger.debug('About to submit the following query {}'.format(body)) res, status = self.post( self.disambiguate_service, files=files, headers={'Accept': 'application/json'}, ) if status == 200: return self.decode(res), status else: logger.debug('Disambiguation failed.') return None, status
[ "Call", "the", "disambiguation", "service", "in", "order", "to", "get", "meanings", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/nerd_client.py#L204-L243
[ "def", "disambiguate_terms", "(", "self", ",", "terms", ",", "language", "=", "\"en\"", ",", "entities", "=", "None", ")", ":", "body", "=", "{", "\"termVector\"", ":", "terms", ",", "\"entities\"", ":", "[", "]", ",", "\"onlyNER\"", ":", "\"false\"", ",", "\"customisation\"", ":", "\"generic\"", "}", "body", "[", "'language'", "]", "=", "{", "\"lang\"", ":", "language", "}", "if", "entities", ":", "body", "[", "'entities'", "]", "=", "entities", "files", "=", "{", "'query'", ":", "str", "(", "body", ")", "}", "logger", ".", "debug", "(", "'About to submit the following query {}'", ".", "format", "(", "body", ")", ")", "res", ",", "status", "=", "self", ".", "post", "(", "self", ".", "disambiguate_service", ",", "files", "=", "files", ",", "headers", "=", "{", "'Accept'", ":", "'application/json'", "}", ",", ")", "if", "status", "==", "200", ":", "return", "self", ".", "decode", "(", "res", ")", ",", "status", "else", ":", "logger", ".", "debug", "(", "'Disambiguation failed.'", ")", "return", "None", ",", "status" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
NerdClient.disambiguate_text
Call the disambiguation service in order to get meanings. Args: text (str): Text to be disambiguated. language (str): language of text (if known) entities (list): list of entities or mentions to be supplied by the user. Returns: dict, int: API response and API status.
nerd/nerd_client.py
def disambiguate_text(self, text, language=None, entities=None): """ Call the disambiguation service in order to get meanings. Args: text (str): Text to be disambiguated. language (str): language of text (if known) entities (list): list of entities or mentions to be supplied by the user. Returns: dict, int: API response and API status. """ body = { "text": text, "entities": [], "onlyNER": "false", "customisation": "generic" } if language: body['language'] = {"lang": language} if entities: body['entities'] = entities result, status_code = self._process_query(body) if status_code != 200: logger.debug('Disambiguation failed.') return result, status_code
def disambiguate_text(self, text, language=None, entities=None): """ Call the disambiguation service in order to get meanings. Args: text (str): Text to be disambiguated. language (str): language of text (if known) entities (list): list of entities or mentions to be supplied by the user. Returns: dict, int: API response and API status. """ body = { "text": text, "entities": [], "onlyNER": "false", "customisation": "generic" } if language: body['language'] = {"lang": language} if entities: body['entities'] = entities result, status_code = self._process_query(body) if status_code != 200: logger.debug('Disambiguation failed.') return result, status_code
[ "Call", "the", "disambiguation", "service", "in", "order", "to", "get", "meanings", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/nerd_client.py#L245-L276
[ "def", "disambiguate_text", "(", "self", ",", "text", ",", "language", "=", "None", ",", "entities", "=", "None", ")", ":", "body", "=", "{", "\"text\"", ":", "text", ",", "\"entities\"", ":", "[", "]", ",", "\"onlyNER\"", ":", "\"false\"", ",", "\"customisation\"", ":", "\"generic\"", "}", "if", "language", ":", "body", "[", "'language'", "]", "=", "{", "\"lang\"", ":", "language", "}", "if", "entities", ":", "body", "[", "'entities'", "]", "=", "entities", "result", ",", "status_code", "=", "self", ".", "_process_query", "(", "body", ")", "if", "status_code", "!=", "200", ":", "logger", ".", "debug", "(", "'Disambiguation failed.'", ")", "return", "result", ",", "status_code" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
NerdClient.disambiguate_query
Call the disambiguation service in order to disambiguate a search query. Args: text (str): Query to be disambiguated. language (str): language of text (if known) entities (list): list of entities or mentions to be supplied by the user. Returns: dict, int: API response and API status.
nerd/nerd_client.py
def disambiguate_query(self, query, language=None, entities=None): """ Call the disambiguation service in order to disambiguate a search query. Args: text (str): Query to be disambiguated. language (str): language of text (if known) entities (list): list of entities or mentions to be supplied by the user. Returns: dict, int: API response and API status. """ body = { "shortText": query, "entities": [], "onlyNER": "false", "customisation": "generic" } if language: body['language'] = {"lang": language} if entities: body['entities'] = entities files = {'query': str(body)} logger.debug('About to submit the following query {}'.format(body)) res, status = self.post( self.disambiguate_service, files=files, headers={'Accept': 'application/json'}, ) if status == 200: return self.decode(res), status else: logger.debug('Disambiguation failed.') return None, status
def disambiguate_query(self, query, language=None, entities=None): """ Call the disambiguation service in order to disambiguate a search query. Args: text (str): Query to be disambiguated. language (str): language of text (if known) entities (list): list of entities or mentions to be supplied by the user. Returns: dict, int: API response and API status. """ body = { "shortText": query, "entities": [], "onlyNER": "false", "customisation": "generic" } if language: body['language'] = {"lang": language} if entities: body['entities'] = entities files = {'query': str(body)} logger.debug('About to submit the following query {}'.format(body)) res, status = self.post( self.disambiguate_service, files=files, headers={'Accept': 'application/json'}, ) if status == 200: return self.decode(res), status else: logger.debug('Disambiguation failed.') return None, status
[ "Call", "the", "disambiguation", "service", "in", "order", "to", "disambiguate", "a", "search", "query", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/nerd_client.py#L278-L318
[ "def", "disambiguate_query", "(", "self", ",", "query", ",", "language", "=", "None", ",", "entities", "=", "None", ")", ":", "body", "=", "{", "\"shortText\"", ":", "query", ",", "\"entities\"", ":", "[", "]", ",", "\"onlyNER\"", ":", "\"false\"", ",", "\"customisation\"", ":", "\"generic\"", "}", "if", "language", ":", "body", "[", "'language'", "]", "=", "{", "\"lang\"", ":", "language", "}", "if", "entities", ":", "body", "[", "'entities'", "]", "=", "entities", "files", "=", "{", "'query'", ":", "str", "(", "body", ")", "}", "logger", ".", "debug", "(", "'About to submit the following query {}'", ".", "format", "(", "body", ")", ")", "res", ",", "status", "=", "self", ".", "post", "(", "self", ".", "disambiguate_service", ",", "files", "=", "files", ",", "headers", "=", "{", "'Accept'", ":", "'application/json'", "}", ",", ")", "if", "status", "==", "200", ":", "return", "self", ".", "decode", "(", "res", ")", ",", "status", "else", ":", "logger", ".", "debug", "(", "'Disambiguation failed.'", ")", "return", "None", ",", "status" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
NerdClient.segment
Call the segmenter in order to split text in sentences. Args: text (str): Text to be segmented. Returns: dict, int: A dict containing a list of dicts with the offsets of each sentence; an integer representing the response code.
nerd/nerd_client.py
def segment(self, text): """ Call the segmenter in order to split text in sentences. Args: text (str): Text to be segmented. Returns: dict, int: A dict containing a list of dicts with the offsets of each sentence; an integer representing the response code. """ files = {'text': text} res, status_code = self.post(self.segmentation_service, files=files) if status_code != 200: logger.debug('Segmentation failed.') return self.decode(res), status_code
def segment(self, text): """ Call the segmenter in order to split text in sentences. Args: text (str): Text to be segmented. Returns: dict, int: A dict containing a list of dicts with the offsets of each sentence; an integer representing the response code. """ files = {'text': text} res, status_code = self.post(self.segmentation_service, files=files) if status_code != 200: logger.debug('Segmentation failed.') return self.decode(res), status_code
[ "Call", "the", "segmenter", "in", "order", "to", "split", "text", "in", "sentences", "." ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/nerd_client.py#L320-L337
[ "def", "segment", "(", "self", ",", "text", ")", ":", "files", "=", "{", "'text'", ":", "text", "}", "res", ",", "status_code", "=", "self", ".", "post", "(", "self", ".", "segmentation_service", ",", "files", "=", "files", ")", "if", "status_code", "!=", "200", ":", "logger", ".", "debug", "(", "'Segmentation failed.'", ")", "return", "self", ".", "decode", "(", "res", ")", ",", "status_code" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
NerdClient.get_language
Recognise the language of the text in input Args: id (str): The text whose the language needs to be recognised Returns: dict, int: A dict containing the recognised language and the confidence score.
nerd/nerd_client.py
def get_language(self, text): """ Recognise the language of the text in input Args: id (str): The text whose the language needs to be recognised Returns: dict, int: A dict containing the recognised language and the confidence score. """ files = {'text': text} res, status_code = self.post(self.language_service, files=files) if status_code != 200: logger.debug('Language recognition failed.') return self.decode(res), status_code
def get_language(self, text): """ Recognise the language of the text in input Args: id (str): The text whose the language needs to be recognised Returns: dict, int: A dict containing the recognised language and the confidence score. """ files = {'text': text} res, status_code = self.post(self.language_service, files=files) if status_code != 200: logger.debug('Language recognition failed.') return self.decode(res), status_code
[ "Recognise", "the", "language", "of", "the", "text", "in", "input" ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/nerd_client.py#L339-L355
[ "def", "get_language", "(", "self", ",", "text", ")", ":", "files", "=", "{", "'text'", ":", "text", "}", "res", ",", "status_code", "=", "self", ".", "post", "(", "self", ".", "language_service", ",", "files", "=", "files", ")", "if", "status_code", "!=", "200", ":", "logger", ".", "debug", "(", "'Language recognition failed.'", ")", "return", "self", ".", "decode", "(", "res", ")", ",", "status_code" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
NerdClient.get_concept
Fetch the concept from the Knowledge base Args: id (str): The concept id to be fetched, it can be Wikipedia page id or Wikiedata id. Returns: dict, int: A dict containing the concept information; an integer representing the response code.
nerd/nerd_client.py
def get_concept(self, conceptId, lang='en'): """ Fetch the concept from the Knowledge base Args: id (str): The concept id to be fetched, it can be Wikipedia page id or Wikiedata id. Returns: dict, int: A dict containing the concept information; an integer representing the response code. """ url = urljoin(self.concept_service + '/', conceptId) res, status_code = self.get(url, params={'lang': lang}) if status_code != 200: logger.debug('Fetch concept failed.') return self.decode(res), status_code
def get_concept(self, conceptId, lang='en'): """ Fetch the concept from the Knowledge base Args: id (str): The concept id to be fetched, it can be Wikipedia page id or Wikiedata id. Returns: dict, int: A dict containing the concept information; an integer representing the response code. """ url = urljoin(self.concept_service + '/', conceptId) res, status_code = self.get(url, params={'lang': lang}) if status_code != 200: logger.debug('Fetch concept failed.') return self.decode(res), status_code
[ "Fetch", "the", "concept", "from", "the", "Knowledge", "base" ]
hirmeos/entity-fishing-client-python
python
https://github.com/hirmeos/entity-fishing-client-python/blob/cd5c6e10c6c4e653669e11d735d5773766986bda/nerd/nerd_client.py#L357-L375
[ "def", "get_concept", "(", "self", ",", "conceptId", ",", "lang", "=", "'en'", ")", ":", "url", "=", "urljoin", "(", "self", ".", "concept_service", "+", "'/'", ",", "conceptId", ")", "res", ",", "status_code", "=", "self", ".", "get", "(", "url", ",", "params", "=", "{", "'lang'", ":", "lang", "}", ")", "if", "status_code", "!=", "200", ":", "logger", ".", "debug", "(", "'Fetch concept failed.'", ")", "return", "self", ".", "decode", "(", "res", ")", ",", "status_code" ]
cd5c6e10c6c4e653669e11d735d5773766986bda
test
MDREnsemble.fit
Constructs the MDR ensemble from the provided training data Parameters ---------- features: array-like {n_samples, n_features} Feature matrix classes: array-like {n_samples} List of class labels for prediction Returns ------- None
mdr/mdr_ensemble.py
def fit(self, features, classes): """Constructs the MDR ensemble from the provided training data Parameters ---------- features: array-like {n_samples, n_features} Feature matrix classes: array-like {n_samples} List of class labels for prediction Returns ------- None """ self.ensemble.fit(features, classes) # Construct the feature map from the ensemble predictions unique_rows = list(set([tuple(row) for row in features])) for row in unique_rows: self.feature_map[row] = self.ensemble.predict([row])[0]
def fit(self, features, classes): """Constructs the MDR ensemble from the provided training data Parameters ---------- features: array-like {n_samples, n_features} Feature matrix classes: array-like {n_samples} List of class labels for prediction Returns ------- None """ self.ensemble.fit(features, classes) # Construct the feature map from the ensemble predictions unique_rows = list(set([tuple(row) for row in features])) for row in unique_rows: self.feature_map[row] = self.ensemble.predict([row])[0]
[ "Constructs", "the", "MDR", "ensemble", "from", "the", "provided", "training", "data" ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/mdr_ensemble.py#L71-L91
[ "def", "fit", "(", "self", ",", "features", ",", "classes", ")", ":", "self", ".", "ensemble", ".", "fit", "(", "features", ",", "classes", ")", "# Construct the feature map from the ensemble predictions", "unique_rows", "=", "list", "(", "set", "(", "[", "tuple", "(", "row", ")", "for", "row", "in", "features", "]", ")", ")", "for", "row", "in", "unique_rows", ":", "self", ".", "feature_map", "[", "row", "]", "=", "self", ".", "ensemble", ".", "predict", "(", "[", "row", "]", ")", "[", "0", "]" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
MDREnsemble.score
Estimates the accuracy of the predictions from the MDR ensemble Parameters ---------- features: array-like {n_samples, n_features} Feature matrix to predict from classes: array-like {n_samples} List of true class labels Returns ------- accuracy_score: float The estimated accuracy based on the constructed feature
mdr/mdr_ensemble.py
def score(self, features, classes, scoring_function=None, **scoring_function_kwargs): """Estimates the accuracy of the predictions from the MDR ensemble Parameters ---------- features: array-like {n_samples, n_features} Feature matrix to predict from classes: array-like {n_samples} List of true class labels Returns ------- accuracy_score: float The estimated accuracy based on the constructed feature """ new_feature = self.ensemble.predict(features) if scoring_function is None: return accuracy_score(classes, new_feature) else: return scoring_function(classes, new_feature, **scoring_function_kwargs)
def score(self, features, classes, scoring_function=None, **scoring_function_kwargs): """Estimates the accuracy of the predictions from the MDR ensemble Parameters ---------- features: array-like {n_samples, n_features} Feature matrix to predict from classes: array-like {n_samples} List of true class labels Returns ------- accuracy_score: float The estimated accuracy based on the constructed feature """ new_feature = self.ensemble.predict(features) if scoring_function is None: return accuracy_score(classes, new_feature) else: return scoring_function(classes, new_feature, **scoring_function_kwargs)
[ "Estimates", "the", "accuracy", "of", "the", "predictions", "from", "the", "MDR", "ensemble" ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/mdr_ensemble.py#L128-L149
[ "def", "score", "(", "self", ",", "features", ",", "classes", ",", "scoring_function", "=", "None", ",", "*", "*", "scoring_function_kwargs", ")", ":", "new_feature", "=", "self", ".", "ensemble", ".", "predict", "(", "features", ")", "if", "scoring_function", "is", "None", ":", "return", "accuracy_score", "(", "classes", ",", "new_feature", ")", "else", ":", "return", "scoring_function", "(", "classes", ",", "new_feature", ",", "*", "*", "scoring_function_kwargs", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
MDRBase.fit
Constructs the MDR feature map from the provided training data. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix class_labels: array-like {n_samples} List of true class labels Returns ------- self: A copy of the fitted model
mdr/mdr.py
def fit(self, features, class_labels): """Constructs the MDR feature map from the provided training data. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix class_labels: array-like {n_samples} List of true class labels Returns ------- self: A copy of the fitted model """ unique_labels = sorted(np.unique(class_labels)) if len(unique_labels) != 2: raise ValueError('MDR only supports binary endpoints.') # Count the distribution of classes that fall into each MDR grid cell self.class_count_matrix = defaultdict(lambda: defaultdict(int)) for row_i in range(features.shape[0]): feature_instance = tuple(features[row_i]) self.class_count_matrix[feature_instance][class_labels[row_i]] += 1 self.class_count_matrix = dict(self.class_count_matrix) # Only applies to binary classification overall_class_fraction = float(sum(class_labels == unique_labels[0])) / class_labels.size # If one class is more abundant in a MDR grid cell than it is overall, then assign the cell to that class self.feature_map = {} for feature_instance in self.class_count_matrix: counts = self.class_count_matrix[feature_instance] fraction = float(counts[unique_labels[0]]) / np.sum(list(counts.values())) if fraction > overall_class_fraction: self.feature_map[feature_instance] = unique_labels[0] elif fraction == overall_class_fraction: self.feature_map[feature_instance] = self.tie_break else: self.feature_map[feature_instance] = unique_labels[1] return self
def fit(self, features, class_labels): """Constructs the MDR feature map from the provided training data. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix class_labels: array-like {n_samples} List of true class labels Returns ------- self: A copy of the fitted model """ unique_labels = sorted(np.unique(class_labels)) if len(unique_labels) != 2: raise ValueError('MDR only supports binary endpoints.') # Count the distribution of classes that fall into each MDR grid cell self.class_count_matrix = defaultdict(lambda: defaultdict(int)) for row_i in range(features.shape[0]): feature_instance = tuple(features[row_i]) self.class_count_matrix[feature_instance][class_labels[row_i]] += 1 self.class_count_matrix = dict(self.class_count_matrix) # Only applies to binary classification overall_class_fraction = float(sum(class_labels == unique_labels[0])) / class_labels.size # If one class is more abundant in a MDR grid cell than it is overall, then assign the cell to that class self.feature_map = {} for feature_instance in self.class_count_matrix: counts = self.class_count_matrix[feature_instance] fraction = float(counts[unique_labels[0]]) / np.sum(list(counts.values())) if fraction > overall_class_fraction: self.feature_map[feature_instance] = unique_labels[0] elif fraction == overall_class_fraction: self.feature_map[feature_instance] = self.tie_break else: self.feature_map[feature_instance] = unique_labels[1] return self
[ "Constructs", "the", "MDR", "feature", "map", "from", "the", "provided", "training", "data", "." ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/mdr.py#L59-L100
[ "def", "fit", "(", "self", ",", "features", ",", "class_labels", ")", ":", "unique_labels", "=", "sorted", "(", "np", ".", "unique", "(", "class_labels", ")", ")", "if", "len", "(", "unique_labels", ")", "!=", "2", ":", "raise", "ValueError", "(", "'MDR only supports binary endpoints.'", ")", "# Count the distribution of classes that fall into each MDR grid cell", "self", ".", "class_count_matrix", "=", "defaultdict", "(", "lambda", ":", "defaultdict", "(", "int", ")", ")", "for", "row_i", "in", "range", "(", "features", ".", "shape", "[", "0", "]", ")", ":", "feature_instance", "=", "tuple", "(", "features", "[", "row_i", "]", ")", "self", ".", "class_count_matrix", "[", "feature_instance", "]", "[", "class_labels", "[", "row_i", "]", "]", "+=", "1", "self", ".", "class_count_matrix", "=", "dict", "(", "self", ".", "class_count_matrix", ")", "# Only applies to binary classification", "overall_class_fraction", "=", "float", "(", "sum", "(", "class_labels", "==", "unique_labels", "[", "0", "]", ")", ")", "/", "class_labels", ".", "size", "# If one class is more abundant in a MDR grid cell than it is overall, then assign the cell to that class", "self", ".", "feature_map", "=", "{", "}", "for", "feature_instance", "in", "self", ".", "class_count_matrix", ":", "counts", "=", "self", ".", "class_count_matrix", "[", "feature_instance", "]", "fraction", "=", "float", "(", "counts", "[", "unique_labels", "[", "0", "]", "]", ")", "/", "np", ".", "sum", "(", "list", "(", "counts", ".", "values", "(", ")", ")", ")", "if", "fraction", ">", "overall_class_fraction", ":", "self", ".", "feature_map", "[", "feature_instance", "]", "=", "unique_labels", "[", "0", "]", "elif", "fraction", "==", "overall_class_fraction", ":", "self", ".", "feature_map", "[", "feature_instance", "]", "=", "self", ".", "tie_break", "else", ":", "self", ".", "feature_map", "[", "feature_instance", "]", "=", "unique_labels", "[", "1", "]", "return", "self" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
MDR.fit_transform
Convenience function that fits the provided data then constructs a new feature from the provided features. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix class_labels: array-like {n_samples} List of true class labels Returns ---------- array-like: {n_samples, 1} Constructed features from the provided feature matrix
mdr/mdr.py
def fit_transform(self, features, class_labels): """Convenience function that fits the provided data then constructs a new feature from the provided features. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix class_labels: array-like {n_samples} List of true class labels Returns ---------- array-like: {n_samples, 1} Constructed features from the provided feature matrix """ self.fit(features, class_labels) return self.transform(features)
def fit_transform(self, features, class_labels): """Convenience function that fits the provided data then constructs a new feature from the provided features. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix class_labels: array-like {n_samples} List of true class labels Returns ---------- array-like: {n_samples, 1} Constructed features from the provided feature matrix """ self.fit(features, class_labels) return self.transform(features)
[ "Convenience", "function", "that", "fits", "the", "provided", "data", "then", "constructs", "a", "new", "feature", "from", "the", "provided", "features", "." ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/mdr.py#L137-L154
[ "def", "fit_transform", "(", "self", ",", "features", ",", "class_labels", ")", ":", "self", ".", "fit", "(", "features", ",", "class_labels", ")", "return", "self", ".", "transform", "(", "features", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
MDRClassifier.fit_predict
Convenience function that fits the provided data then constructs predictions from the provided features. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix class_labels: array-like {n_samples} List of true class labels Returns ---------- array-like: {n_samples} Constructed features from the provided feature matrix
mdr/mdr.py
def fit_predict(self, features, class_labels): """Convenience function that fits the provided data then constructs predictions from the provided features. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix class_labels: array-like {n_samples} List of true class labels Returns ---------- array-like: {n_samples} Constructed features from the provided feature matrix """ self.fit(features, class_labels) return self.predict(features)
def fit_predict(self, features, class_labels): """Convenience function that fits the provided data then constructs predictions from the provided features. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix class_labels: array-like {n_samples} List of true class labels Returns ---------- array-like: {n_samples} Constructed features from the provided feature matrix """ self.fit(features, class_labels) return self.predict(features)
[ "Convenience", "function", "that", "fits", "the", "provided", "data", "then", "constructs", "predictions", "from", "the", "provided", "features", "." ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/mdr.py#L191-L208
[ "def", "fit_predict", "(", "self", ",", "features", ",", "class_labels", ")", ":", "self", ".", "fit", "(", "features", ",", "class_labels", ")", "return", "self", ".", "predict", "(", "features", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
MDRClassifier.score
Estimates the accuracy of the predictions from the constructed feature. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix to predict from class_labels: array-like {n_samples} List of true class labels Returns ------- accuracy_score: float The estimated accuracy based on the constructed feature
mdr/mdr.py
def score(self, features, class_labels, scoring_function=None, **scoring_function_kwargs): """Estimates the accuracy of the predictions from the constructed feature. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix to predict from class_labels: array-like {n_samples} List of true class labels Returns ------- accuracy_score: float The estimated accuracy based on the constructed feature """ if self.feature_map is None: raise ValueError('The MDR model must be fit before score can be called.') new_feature = self.predict(features) if scoring_function is None: return accuracy_score(class_labels, new_feature) else: return scoring_function(class_labels, new_feature, **scoring_function_kwargs)
def score(self, features, class_labels, scoring_function=None, **scoring_function_kwargs): """Estimates the accuracy of the predictions from the constructed feature. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix to predict from class_labels: array-like {n_samples} List of true class labels Returns ------- accuracy_score: float The estimated accuracy based on the constructed feature """ if self.feature_map is None: raise ValueError('The MDR model must be fit before score can be called.') new_feature = self.predict(features) if scoring_function is None: return accuracy_score(class_labels, new_feature) else: return scoring_function(class_labels, new_feature, **scoring_function_kwargs)
[ "Estimates", "the", "accuracy", "of", "the", "predictions", "from", "the", "constructed", "feature", "." ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/mdr.py#L210-L234
[ "def", "score", "(", "self", ",", "features", ",", "class_labels", ",", "scoring_function", "=", "None", ",", "*", "*", "scoring_function_kwargs", ")", ":", "if", "self", ".", "feature_map", "is", "None", ":", "raise", "ValueError", "(", "'The MDR model must be fit before score can be called.'", ")", "new_feature", "=", "self", ".", "predict", "(", "features", ")", "if", "scoring_function", "is", "None", ":", "return", "accuracy_score", "(", "class_labels", ",", "new_feature", ")", "else", ":", "return", "scoring_function", "(", "class_labels", ",", "new_feature", ",", "*", "*", "scoring_function_kwargs", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
ContinuousMDR.fit
Constructs the Continuous MDR feature map from the provided training data. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix targets: array-like {n_samples} List of target values for prediction Returns ------- self: A copy of the fitted model
mdr/continuous_mdr.py
def fit(self, features, targets): """Constructs the Continuous MDR feature map from the provided training data. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix targets: array-like {n_samples} List of target values for prediction Returns ------- self: A copy of the fitted model """ self.feature_map = defaultdict(lambda: self.default_label) self.overall_mean_trait_value = np.mean(targets) self.mdr_matrix_values = defaultdict(list) for row_i in range(features.shape[0]): feature_instance = tuple(features[row_i]) self.mdr_matrix_values[feature_instance].append(targets[row_i]) for feature_instance in self.mdr_matrix_values: grid_mean_trait_value = np.mean(self.mdr_matrix_values[feature_instance]) if grid_mean_trait_value > self.overall_mean_trait_value: self.feature_map[feature_instance] = 1 elif grid_mean_trait_value == self.overall_mean_trait_value: self.feature_map[feature_instance] = self.tie_break else: self.feature_map[feature_instance] = 0 # Convert defaultdict to dict so CMDR objects can be easily pickled self.feature_map = dict(self.feature_map) self.mdr_matrix_values = dict(self.mdr_matrix_values) return self
def fit(self, features, targets): """Constructs the Continuous MDR feature map from the provided training data. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix targets: array-like {n_samples} List of target values for prediction Returns ------- self: A copy of the fitted model """ self.feature_map = defaultdict(lambda: self.default_label) self.overall_mean_trait_value = np.mean(targets) self.mdr_matrix_values = defaultdict(list) for row_i in range(features.shape[0]): feature_instance = tuple(features[row_i]) self.mdr_matrix_values[feature_instance].append(targets[row_i]) for feature_instance in self.mdr_matrix_values: grid_mean_trait_value = np.mean(self.mdr_matrix_values[feature_instance]) if grid_mean_trait_value > self.overall_mean_trait_value: self.feature_map[feature_instance] = 1 elif grid_mean_trait_value == self.overall_mean_trait_value: self.feature_map[feature_instance] = self.tie_break else: self.feature_map[feature_instance] = 0 # Convert defaultdict to dict so CMDR objects can be easily pickled self.feature_map = dict(self.feature_map) self.mdr_matrix_values = dict(self.mdr_matrix_values) return self
[ "Constructs", "the", "Continuous", "MDR", "feature", "map", "from", "the", "provided", "training", "data", "." ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/continuous_mdr.py#L57-L93
[ "def", "fit", "(", "self", ",", "features", ",", "targets", ")", ":", "self", ".", "feature_map", "=", "defaultdict", "(", "lambda", ":", "self", ".", "default_label", ")", "self", ".", "overall_mean_trait_value", "=", "np", ".", "mean", "(", "targets", ")", "self", ".", "mdr_matrix_values", "=", "defaultdict", "(", "list", ")", "for", "row_i", "in", "range", "(", "features", ".", "shape", "[", "0", "]", ")", ":", "feature_instance", "=", "tuple", "(", "features", "[", "row_i", "]", ")", "self", ".", "mdr_matrix_values", "[", "feature_instance", "]", ".", "append", "(", "targets", "[", "row_i", "]", ")", "for", "feature_instance", "in", "self", ".", "mdr_matrix_values", ":", "grid_mean_trait_value", "=", "np", ".", "mean", "(", "self", ".", "mdr_matrix_values", "[", "feature_instance", "]", ")", "if", "grid_mean_trait_value", ">", "self", ".", "overall_mean_trait_value", ":", "self", ".", "feature_map", "[", "feature_instance", "]", "=", "1", "elif", "grid_mean_trait_value", "==", "self", ".", "overall_mean_trait_value", ":", "self", ".", "feature_map", "[", "feature_instance", "]", "=", "self", ".", "tie_break", "else", ":", "self", ".", "feature_map", "[", "feature_instance", "]", "=", "0", "# Convert defaultdict to dict so CMDR objects can be easily pickled", "self", ".", "feature_map", "=", "dict", "(", "self", ".", "feature_map", ")", "self", ".", "mdr_matrix_values", "=", "dict", "(", "self", ".", "mdr_matrix_values", ")", "return", "self" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
ContinuousMDR.transform
Uses the Continuous MDR feature map to construct a new feature from the provided features. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix to transform Returns ---------- array-like: {n_samples} Constructed feature from the provided feature matrix The constructed feature will be a binary variable, taking the values 0 and 1
mdr/continuous_mdr.py
def transform(self, features): """Uses the Continuous MDR feature map to construct a new feature from the provided features. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix to transform Returns ---------- array-like: {n_samples} Constructed feature from the provided feature matrix The constructed feature will be a binary variable, taking the values 0 and 1 """ new_feature = np.zeros(features.shape[0], dtype=np.int) for row_i in range(features.shape[0]): feature_instance = tuple(features[row_i]) if feature_instance in self.feature_map: new_feature[row_i] = self.feature_map[feature_instance] else: new_feature[row_i] = self.default_label return new_feature.reshape(features.shape[0], 1)
def transform(self, features): """Uses the Continuous MDR feature map to construct a new feature from the provided features. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix to transform Returns ---------- array-like: {n_samples} Constructed feature from the provided feature matrix The constructed feature will be a binary variable, taking the values 0 and 1 """ new_feature = np.zeros(features.shape[0], dtype=np.int) for row_i in range(features.shape[0]): feature_instance = tuple(features[row_i]) if feature_instance in self.feature_map: new_feature[row_i] = self.feature_map[feature_instance] else: new_feature[row_i] = self.default_label return new_feature.reshape(features.shape[0], 1)
[ "Uses", "the", "Continuous", "MDR", "feature", "map", "to", "construct", "a", "new", "feature", "from", "the", "provided", "features", "." ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/continuous_mdr.py#L95-L119
[ "def", "transform", "(", "self", ",", "features", ")", ":", "new_feature", "=", "np", ".", "zeros", "(", "features", ".", "shape", "[", "0", "]", ",", "dtype", "=", "np", ".", "int", ")", "for", "row_i", "in", "range", "(", "features", ".", "shape", "[", "0", "]", ")", ":", "feature_instance", "=", "tuple", "(", "features", "[", "row_i", "]", ")", "if", "feature_instance", "in", "self", ".", "feature_map", ":", "new_feature", "[", "row_i", "]", "=", "self", ".", "feature_map", "[", "feature_instance", "]", "else", ":", "new_feature", "[", "row_i", "]", "=", "self", ".", "default_label", "return", "new_feature", ".", "reshape", "(", "features", ".", "shape", "[", "0", "]", ",", "1", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
ContinuousMDR.fit_transform
Convenience function that fits the provided data then constructs a new feature from the provided features. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix targets: array-like {n_samples} List of true target values Returns ---------- array-like: {n_samples} Constructed features from the provided feature matrix
mdr/continuous_mdr.py
def fit_transform(self, features, targets): """Convenience function that fits the provided data then constructs a new feature from the provided features. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix targets: array-like {n_samples} List of true target values Returns ---------- array-like: {n_samples} Constructed features from the provided feature matrix """ self.fit(features, targets) return self.transform(features)
def fit_transform(self, features, targets): """Convenience function that fits the provided data then constructs a new feature from the provided features. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix targets: array-like {n_samples} List of true target values Returns ---------- array-like: {n_samples} Constructed features from the provided feature matrix """ self.fit(features, targets) return self.transform(features)
[ "Convenience", "function", "that", "fits", "the", "provided", "data", "then", "constructs", "a", "new", "feature", "from", "the", "provided", "features", "." ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/continuous_mdr.py#L121-L138
[ "def", "fit_transform", "(", "self", ",", "features", ",", "targets", ")", ":", "self", ".", "fit", "(", "features", ",", "targets", ")", "return", "self", ".", "transform", "(", "features", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
ContinuousMDR.score
Estimates the quality of the ContinuousMDR model using a t-statistic. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix to predict from targets: array-like {n_samples} List of true target values Returns ------- quality_score: float The estimated quality of the Continuous MDR model
mdr/continuous_mdr.py
def score(self, features, targets): """Estimates the quality of the ContinuousMDR model using a t-statistic. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix to predict from targets: array-like {n_samples} List of true target values Returns ------- quality_score: float The estimated quality of the Continuous MDR model """ if self.feature_map is None: raise ValueError('The Continuous MDR model must be fit before score() can be called.') group_0_trait_values = [] group_1_trait_values = [] for feature_instance in self.feature_map: if self.feature_map[feature_instance] == 0: group_0_trait_values.extend(self.mdr_matrix_values[feature_instance]) else: group_1_trait_values.extend(self.mdr_matrix_values[feature_instance]) return abs(ttest_ind(group_0_trait_values, group_1_trait_values).statistic)
def score(self, features, targets): """Estimates the quality of the ContinuousMDR model using a t-statistic. Parameters ---------- features: array-like {n_samples, n_features} Feature matrix to predict from targets: array-like {n_samples} List of true target values Returns ------- quality_score: float The estimated quality of the Continuous MDR model """ if self.feature_map is None: raise ValueError('The Continuous MDR model must be fit before score() can be called.') group_0_trait_values = [] group_1_trait_values = [] for feature_instance in self.feature_map: if self.feature_map[feature_instance] == 0: group_0_trait_values.extend(self.mdr_matrix_values[feature_instance]) else: group_1_trait_values.extend(self.mdr_matrix_values[feature_instance]) return abs(ttest_ind(group_0_trait_values, group_1_trait_values).statistic)
[ "Estimates", "the", "quality", "of", "the", "ContinuousMDR", "model", "using", "a", "t", "-", "statistic", "." ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/continuous_mdr.py#L140-L168
[ "def", "score", "(", "self", ",", "features", ",", "targets", ")", ":", "if", "self", ".", "feature_map", "is", "None", ":", "raise", "ValueError", "(", "'The Continuous MDR model must be fit before score() can be called.'", ")", "group_0_trait_values", "=", "[", "]", "group_1_trait_values", "=", "[", "]", "for", "feature_instance", "in", "self", ".", "feature_map", ":", "if", "self", ".", "feature_map", "[", "feature_instance", "]", "==", "0", ":", "group_0_trait_values", ".", "extend", "(", "self", ".", "mdr_matrix_values", "[", "feature_instance", "]", ")", "else", ":", "group_1_trait_values", ".", "extend", "(", "self", ".", "mdr_matrix_values", "[", "feature_instance", "]", ")", "return", "abs", "(", "ttest_ind", "(", "group_0_trait_values", ",", "group_1_trait_values", ")", ".", "statistic", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
entropy
Calculates the entropy, H(X), in the given base Parameters ---------- X: array-like (# samples) An array of values for which to compute the entropy base: integer (default: 2) The base in which to calculate entropy Returns ---------- entropy: float The entropy calculated according to the equation H(X) = -sum(p_x * log p_x) for all states of X
mdr/utils/utils.py
def entropy(X, base=2): """Calculates the entropy, H(X), in the given base Parameters ---------- X: array-like (# samples) An array of values for which to compute the entropy base: integer (default: 2) The base in which to calculate entropy Returns ---------- entropy: float The entropy calculated according to the equation H(X) = -sum(p_x * log p_x) for all states of X """ return scipy.stats.entropy(list(Counter(X).values()), base=base)
def entropy(X, base=2): """Calculates the entropy, H(X), in the given base Parameters ---------- X: array-like (# samples) An array of values for which to compute the entropy base: integer (default: 2) The base in which to calculate entropy Returns ---------- entropy: float The entropy calculated according to the equation H(X) = -sum(p_x * log p_x) for all states of X """ return scipy.stats.entropy(list(Counter(X).values()), base=base)
[ "Calculates", "the", "entropy", "H", "(", "X", ")", "in", "the", "given", "base" ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/utils/utils.py#L29-L45
[ "def", "entropy", "(", "X", ",", "base", "=", "2", ")", ":", "return", "scipy", ".", "stats", ".", "entropy", "(", "list", "(", "Counter", "(", "X", ")", ".", "values", "(", ")", ")", ",", "base", "=", "base", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
joint_entropy
Calculates the joint entropy, H(X,Y), in the given base Parameters ---------- X: array-like (# samples) An array of values for which to compute the joint entropy Y: array-like (# samples) An array of values for which to compute the joint entropy base: integer (default: 2) The base in which to calculate joint entropy Returns ---------- joint_entropy: float The joint entropy calculated according to the equation H(X,Y) = -sum(p_xy * log p_xy) for all combined states of X and Y
mdr/utils/utils.py
def joint_entropy(X, Y, base=2): """Calculates the joint entropy, H(X,Y), in the given base Parameters ---------- X: array-like (# samples) An array of values for which to compute the joint entropy Y: array-like (# samples) An array of values for which to compute the joint entropy base: integer (default: 2) The base in which to calculate joint entropy Returns ---------- joint_entropy: float The joint entropy calculated according to the equation H(X,Y) = -sum(p_xy * log p_xy) for all combined states of X and Y """ X_Y = ['{}{}'.format(x, y) for x, y in zip(X, Y)] return entropy(X_Y, base=base)
def joint_entropy(X, Y, base=2): """Calculates the joint entropy, H(X,Y), in the given base Parameters ---------- X: array-like (# samples) An array of values for which to compute the joint entropy Y: array-like (# samples) An array of values for which to compute the joint entropy base: integer (default: 2) The base in which to calculate joint entropy Returns ---------- joint_entropy: float The joint entropy calculated according to the equation H(X,Y) = -sum(p_xy * log p_xy) for all combined states of X and Y """ X_Y = ['{}{}'.format(x, y) for x, y in zip(X, Y)] return entropy(X_Y, base=base)
[ "Calculates", "the", "joint", "entropy", "H", "(", "X", "Y", ")", "in", "the", "given", "base" ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/utils/utils.py#L47-L66
[ "def", "joint_entropy", "(", "X", ",", "Y", ",", "base", "=", "2", ")", ":", "X_Y", "=", "[", "'{}{}'", ".", "format", "(", "x", ",", "y", ")", "for", "x", ",", "y", "in", "zip", "(", "X", ",", "Y", ")", "]", "return", "entropy", "(", "X_Y", ",", "base", "=", "base", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
conditional_entropy
Calculates the conditional entropy, H(X|Y), in the given base Parameters ---------- X: array-like (# samples) An array of values for which to compute the conditional entropy Y: array-like (# samples) An array of values for which to compute the conditional entropy base: integer (default: 2) The base in which to calculate conditional entropy Returns ---------- conditional_entropy: float The conditional entropy calculated according to the equation H(X|Y) = H(X,Y) - H(Y)
mdr/utils/utils.py
def conditional_entropy(X, Y, base=2): """Calculates the conditional entropy, H(X|Y), in the given base Parameters ---------- X: array-like (# samples) An array of values for which to compute the conditional entropy Y: array-like (# samples) An array of values for which to compute the conditional entropy base: integer (default: 2) The base in which to calculate conditional entropy Returns ---------- conditional_entropy: float The conditional entropy calculated according to the equation H(X|Y) = H(X,Y) - H(Y) """ return joint_entropy(X, Y, base=base) - entropy(Y, base=base)
def conditional_entropy(X, Y, base=2): """Calculates the conditional entropy, H(X|Y), in the given base Parameters ---------- X: array-like (# samples) An array of values for which to compute the conditional entropy Y: array-like (# samples) An array of values for which to compute the conditional entropy base: integer (default: 2) The base in which to calculate conditional entropy Returns ---------- conditional_entropy: float The conditional entropy calculated according to the equation H(X|Y) = H(X,Y) - H(Y) """ return joint_entropy(X, Y, base=base) - entropy(Y, base=base)
[ "Calculates", "the", "conditional", "entropy", "H", "(", "X|Y", ")", "in", "the", "given", "base" ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/utils/utils.py#L68-L86
[ "def", "conditional_entropy", "(", "X", ",", "Y", ",", "base", "=", "2", ")", ":", "return", "joint_entropy", "(", "X", ",", "Y", ",", "base", "=", "base", ")", "-", "entropy", "(", "Y", ",", "base", "=", "base", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
mutual_information
Calculates the mutual information between two variables, I(X;Y), in the given base Parameters ---------- X: array-like (# samples) An array of values for which to compute the mutual information Y: array-like (# samples) An array of values for which to compute the mutual information base: integer (default: 2) The base in which to calculate mutual information Returns ---------- mutual_information: float The mutual information calculated according to the equation I(X;Y) = H(Y) - H(Y|X)
mdr/utils/utils.py
def mutual_information(X, Y, base=2): """Calculates the mutual information between two variables, I(X;Y), in the given base Parameters ---------- X: array-like (# samples) An array of values for which to compute the mutual information Y: array-like (# samples) An array of values for which to compute the mutual information base: integer (default: 2) The base in which to calculate mutual information Returns ---------- mutual_information: float The mutual information calculated according to the equation I(X;Y) = H(Y) - H(Y|X) """ return entropy(Y, base=base) - conditional_entropy(Y, X, base=base)
def mutual_information(X, Y, base=2): """Calculates the mutual information between two variables, I(X;Y), in the given base Parameters ---------- X: array-like (# samples) An array of values for which to compute the mutual information Y: array-like (# samples) An array of values for which to compute the mutual information base: integer (default: 2) The base in which to calculate mutual information Returns ---------- mutual_information: float The mutual information calculated according to the equation I(X;Y) = H(Y) - H(Y|X) """ return entropy(Y, base=base) - conditional_entropy(Y, X, base=base)
[ "Calculates", "the", "mutual", "information", "between", "two", "variables", "I", "(", "X", ";", "Y", ")", "in", "the", "given", "base" ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/utils/utils.py#L88-L106
[ "def", "mutual_information", "(", "X", ",", "Y", ",", "base", "=", "2", ")", ":", "return", "entropy", "(", "Y", ",", "base", "=", "base", ")", "-", "conditional_entropy", "(", "Y", ",", "X", ",", "base", "=", "base", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
two_way_information_gain
Calculates the two-way information gain between three variables, I(X;Y;Z), in the given base IG(X;Y;Z) indicates the information gained about variable Z by the joint variable X_Y, after removing the information that X and Y have about Z individually. Thus, two-way information gain measures the synergistic predictive value of variables X and Y about variable Z. Parameters ---------- X: array-like (# samples) An array of values for which to compute the 2-way information gain Y: array-like (# samples) An array of values for which to compute the 2-way information gain Z: array-like (# samples) An array of outcome values for which to compute the 2-way information gain base: integer (default: 2) The base in which to calculate 2-way information Returns ---------- mutual_information: float The information gain calculated according to the equation IG(X;Y;Z) = I(X,Y;Z) - I(X;Z) - I(Y;Z)
mdr/utils/utils.py
def two_way_information_gain(X, Y, Z, base=2): """Calculates the two-way information gain between three variables, I(X;Y;Z), in the given base IG(X;Y;Z) indicates the information gained about variable Z by the joint variable X_Y, after removing the information that X and Y have about Z individually. Thus, two-way information gain measures the synergistic predictive value of variables X and Y about variable Z. Parameters ---------- X: array-like (# samples) An array of values for which to compute the 2-way information gain Y: array-like (# samples) An array of values for which to compute the 2-way information gain Z: array-like (# samples) An array of outcome values for which to compute the 2-way information gain base: integer (default: 2) The base in which to calculate 2-way information Returns ---------- mutual_information: float The information gain calculated according to the equation IG(X;Y;Z) = I(X,Y;Z) - I(X;Z) - I(Y;Z) """ X_Y = ['{}{}'.format(x, y) for x, y in zip(X, Y)] return (mutual_information(X_Y, Z, base=base) - mutual_information(X, Z, base=base) - mutual_information(Y, Z, base=base))
def two_way_information_gain(X, Y, Z, base=2): """Calculates the two-way information gain between three variables, I(X;Y;Z), in the given base IG(X;Y;Z) indicates the information gained about variable Z by the joint variable X_Y, after removing the information that X and Y have about Z individually. Thus, two-way information gain measures the synergistic predictive value of variables X and Y about variable Z. Parameters ---------- X: array-like (# samples) An array of values for which to compute the 2-way information gain Y: array-like (# samples) An array of values for which to compute the 2-way information gain Z: array-like (# samples) An array of outcome values for which to compute the 2-way information gain base: integer (default: 2) The base in which to calculate 2-way information Returns ---------- mutual_information: float The information gain calculated according to the equation IG(X;Y;Z) = I(X,Y;Z) - I(X;Z) - I(Y;Z) """ X_Y = ['{}{}'.format(x, y) for x, y in zip(X, Y)] return (mutual_information(X_Y, Z, base=base) - mutual_information(X, Z, base=base) - mutual_information(Y, Z, base=base))
[ "Calculates", "the", "two", "-", "way", "information", "gain", "between", "three", "variables", "I", "(", "X", ";", "Y", ";", "Z", ")", "in", "the", "given", "base" ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/utils/utils.py#L108-L135
[ "def", "two_way_information_gain", "(", "X", ",", "Y", ",", "Z", ",", "base", "=", "2", ")", ":", "X_Y", "=", "[", "'{}{}'", ".", "format", "(", "x", ",", "y", ")", "for", "x", ",", "y", "in", "zip", "(", "X", ",", "Y", ")", "]", "return", "(", "mutual_information", "(", "X_Y", ",", "Z", ",", "base", "=", "base", ")", "-", "mutual_information", "(", "X", ",", "Z", ",", "base", "=", "base", ")", "-", "mutual_information", "(", "Y", ",", "Z", ",", "base", "=", "base", ")", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
three_way_information_gain
Calculates the three-way information gain between three variables, I(W;X;Y;Z), in the given base IG(W;X;Y;Z) indicates the information gained about variable Z by the joint variable W_X_Y, after removing the information that W, X, and Y have about Z individually and jointly in pairs. Thus, 3-way information gain measures the synergistic predictive value of variables W, X, and Y about variable Z. Parameters ---------- W: array-like (# samples) An array of values for which to compute the 3-way information gain X: array-like (# samples) An array of values for which to compute the 3-way information gain Y: array-like (# samples) An array of values for which to compute the 3-way information gain Z: array-like (# samples) An array of outcome values for which to compute the 3-way information gain base: integer (default: 2) The base in which to calculate 3-way information Returns ---------- mutual_information: float The information gain calculated according to the equation: IG(W;X;Y;Z) = I(W,X,Y;Z) - IG(W;X;Z) - IG(W;Y;Z) - IG(X;Y;Z) - I(W;Z) - I(X;Z) - I(Y;Z)
mdr/utils/utils.py
def three_way_information_gain(W, X, Y, Z, base=2): """Calculates the three-way information gain between three variables, I(W;X;Y;Z), in the given base IG(W;X;Y;Z) indicates the information gained about variable Z by the joint variable W_X_Y, after removing the information that W, X, and Y have about Z individually and jointly in pairs. Thus, 3-way information gain measures the synergistic predictive value of variables W, X, and Y about variable Z. Parameters ---------- W: array-like (# samples) An array of values for which to compute the 3-way information gain X: array-like (# samples) An array of values for which to compute the 3-way information gain Y: array-like (# samples) An array of values for which to compute the 3-way information gain Z: array-like (# samples) An array of outcome values for which to compute the 3-way information gain base: integer (default: 2) The base in which to calculate 3-way information Returns ---------- mutual_information: float The information gain calculated according to the equation: IG(W;X;Y;Z) = I(W,X,Y;Z) - IG(W;X;Z) - IG(W;Y;Z) - IG(X;Y;Z) - I(W;Z) - I(X;Z) - I(Y;Z) """ W_X_Y = ['{}{}{}'.format(w, x, y) for w, x, y in zip(W, X, Y)] return (mutual_information(W_X_Y, Z, base=base) - two_way_information_gain(W, X, Z, base=base) - two_way_information_gain(W, Y, Z, base=base) - two_way_information_gain(X, Y, Z, base=base) - mutual_information(W, Z, base=base) - mutual_information(X, Z, base=base) - mutual_information(Y, Z, base=base))
def three_way_information_gain(W, X, Y, Z, base=2): """Calculates the three-way information gain between three variables, I(W;X;Y;Z), in the given base IG(W;X;Y;Z) indicates the information gained about variable Z by the joint variable W_X_Y, after removing the information that W, X, and Y have about Z individually and jointly in pairs. Thus, 3-way information gain measures the synergistic predictive value of variables W, X, and Y about variable Z. Parameters ---------- W: array-like (# samples) An array of values for which to compute the 3-way information gain X: array-like (# samples) An array of values for which to compute the 3-way information gain Y: array-like (# samples) An array of values for which to compute the 3-way information gain Z: array-like (# samples) An array of outcome values for which to compute the 3-way information gain base: integer (default: 2) The base in which to calculate 3-way information Returns ---------- mutual_information: float The information gain calculated according to the equation: IG(W;X;Y;Z) = I(W,X,Y;Z) - IG(W;X;Z) - IG(W;Y;Z) - IG(X;Y;Z) - I(W;Z) - I(X;Z) - I(Y;Z) """ W_X_Y = ['{}{}{}'.format(w, x, y) for w, x, y in zip(W, X, Y)] return (mutual_information(W_X_Y, Z, base=base) - two_way_information_gain(W, X, Z, base=base) - two_way_information_gain(W, Y, Z, base=base) - two_way_information_gain(X, Y, Z, base=base) - mutual_information(W, Z, base=base) - mutual_information(X, Z, base=base) - mutual_information(Y, Z, base=base))
[ "Calculates", "the", "three", "-", "way", "information", "gain", "between", "three", "variables", "I", "(", "W", ";", "X", ";", "Y", ";", "Z", ")", "in", "the", "given", "base" ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/utils/utils.py#L137-L171
[ "def", "three_way_information_gain", "(", "W", ",", "X", ",", "Y", ",", "Z", ",", "base", "=", "2", ")", ":", "W_X_Y", "=", "[", "'{}{}{}'", ".", "format", "(", "w", ",", "x", ",", "y", ")", "for", "w", ",", "x", ",", "y", "in", "zip", "(", "W", ",", "X", ",", "Y", ")", "]", "return", "(", "mutual_information", "(", "W_X_Y", ",", "Z", ",", "base", "=", "base", ")", "-", "two_way_information_gain", "(", "W", ",", "X", ",", "Z", ",", "base", "=", "base", ")", "-", "two_way_information_gain", "(", "W", ",", "Y", ",", "Z", ",", "base", "=", "base", ")", "-", "two_way_information_gain", "(", "X", ",", "Y", ",", "Z", ",", "base", "=", "base", ")", "-", "mutual_information", "(", "W", ",", "Z", ",", "base", "=", "base", ")", "-", "mutual_information", "(", "X", ",", "Z", ",", "base", "=", "base", ")", "-", "mutual_information", "(", "Y", ",", "Z", ",", "base", "=", "base", ")", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
_mdr_predict
Fits a MDR model to variables X and Y with the given labels, then returns the resulting predictions This is a convenience method that should only be used internally. Parameters ---------- X: array-like (# samples) An array of values corresponding to one feature in the MDR model Y: array-like (# samples) An array of values corresponding to one feature in the MDR model labels: array-like (# samples) The class labels corresponding to features X and Y Returns ---------- predictions: array-like (# samples) The predictions from the fitted MDR model
mdr/utils/utils.py
def _mdr_predict(X, Y, labels): """Fits a MDR model to variables X and Y with the given labels, then returns the resulting predictions This is a convenience method that should only be used internally. Parameters ---------- X: array-like (# samples) An array of values corresponding to one feature in the MDR model Y: array-like (# samples) An array of values corresponding to one feature in the MDR model labels: array-like (# samples) The class labels corresponding to features X and Y Returns ---------- predictions: array-like (# samples) The predictions from the fitted MDR model """ return MDR().fit_predict(np.column_stack((X, Y)), labels)
def _mdr_predict(X, Y, labels): """Fits a MDR model to variables X and Y with the given labels, then returns the resulting predictions This is a convenience method that should only be used internally. Parameters ---------- X: array-like (# samples) An array of values corresponding to one feature in the MDR model Y: array-like (# samples) An array of values corresponding to one feature in the MDR model labels: array-like (# samples) The class labels corresponding to features X and Y Returns ---------- predictions: array-like (# samples) The predictions from the fitted MDR model """ return MDR().fit_predict(np.column_stack((X, Y)), labels)
[ "Fits", "a", "MDR", "model", "to", "variables", "X", "and", "Y", "with", "the", "given", "labels", "then", "returns", "the", "resulting", "predictions" ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/utils/utils.py#L173-L193
[ "def", "_mdr_predict", "(", "X", ",", "Y", ",", "labels", ")", ":", "return", "MDR", "(", ")", ".", "fit_predict", "(", "np", ".", "column_stack", "(", "(", "X", ",", "Y", ")", ")", ",", "labels", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
mdr_entropy
Calculates the MDR entropy, H(XY), in the given base MDR entropy is calculated by combining variables X and Y into a single MDR model then calculating the entropy of the resulting model's predictions. Parameters ---------- X: array-like (# samples) An array of values corresponding to one feature in the MDR model Y: array-like (# samples) An array of values corresponding to one feature in the MDR model labels: array-like (# samples) The class labels corresponding to features X and Y base: integer (default: 2) The base in which to calculate MDR entropy Returns ---------- mdr_entropy: float The MDR entropy calculated according to the equation H(XY) = -sum(p_xy * log p_xy) for all output states of the MDR model
mdr/utils/utils.py
def mdr_entropy(X, Y, labels, base=2): """Calculates the MDR entropy, H(XY), in the given base MDR entropy is calculated by combining variables X and Y into a single MDR model then calculating the entropy of the resulting model's predictions. Parameters ---------- X: array-like (# samples) An array of values corresponding to one feature in the MDR model Y: array-like (# samples) An array of values corresponding to one feature in the MDR model labels: array-like (# samples) The class labels corresponding to features X and Y base: integer (default: 2) The base in which to calculate MDR entropy Returns ---------- mdr_entropy: float The MDR entropy calculated according to the equation H(XY) = -sum(p_xy * log p_xy) for all output states of the MDR model """ return entropy(_mdr_predict(X, Y, labels), base=base)
def mdr_entropy(X, Y, labels, base=2): """Calculates the MDR entropy, H(XY), in the given base MDR entropy is calculated by combining variables X and Y into a single MDR model then calculating the entropy of the resulting model's predictions. Parameters ---------- X: array-like (# samples) An array of values corresponding to one feature in the MDR model Y: array-like (# samples) An array of values corresponding to one feature in the MDR model labels: array-like (# samples) The class labels corresponding to features X and Y base: integer (default: 2) The base in which to calculate MDR entropy Returns ---------- mdr_entropy: float The MDR entropy calculated according to the equation H(XY) = -sum(p_xy * log p_xy) for all output states of the MDR model """ return entropy(_mdr_predict(X, Y, labels), base=base)
[ "Calculates", "the", "MDR", "entropy", "H", "(", "XY", ")", "in", "the", "given", "base" ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/utils/utils.py#L195-L218
[ "def", "mdr_entropy", "(", "X", ",", "Y", ",", "labels", ",", "base", "=", "2", ")", ":", "return", "entropy", "(", "_mdr_predict", "(", "X", ",", "Y", ",", "labels", ")", ",", "base", "=", "base", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
mdr_conditional_entropy
Calculates the MDR conditional entropy, H(XY|labels), in the given base MDR conditional entropy is calculated by combining variables X and Y into a single MDR model then calculating the entropy of the resulting model's predictions conditional on the provided labels. Parameters ---------- X: array-like (# samples) An array of values corresponding to one feature in the MDR model Y: array-like (# samples) An array of values corresponding to one feature in the MDR model labels: array-like (# samples) The class labels corresponding to features X and Y base: integer (default: 2) The base in which to calculate MDR conditional entropy Returns ---------- mdr_conditional_entropy: float The MDR conditional entropy calculated according to the equation H(XY|labels) = H(XY,labels) - H(labels)
mdr/utils/utils.py
def mdr_conditional_entropy(X, Y, labels, base=2): """Calculates the MDR conditional entropy, H(XY|labels), in the given base MDR conditional entropy is calculated by combining variables X and Y into a single MDR model then calculating the entropy of the resulting model's predictions conditional on the provided labels. Parameters ---------- X: array-like (# samples) An array of values corresponding to one feature in the MDR model Y: array-like (# samples) An array of values corresponding to one feature in the MDR model labels: array-like (# samples) The class labels corresponding to features X and Y base: integer (default: 2) The base in which to calculate MDR conditional entropy Returns ---------- mdr_conditional_entropy: float The MDR conditional entropy calculated according to the equation H(XY|labels) = H(XY,labels) - H(labels) """ return conditional_entropy(_mdr_predict(X, Y, labels), labels, base=base)
def mdr_conditional_entropy(X, Y, labels, base=2): """Calculates the MDR conditional entropy, H(XY|labels), in the given base MDR conditional entropy is calculated by combining variables X and Y into a single MDR model then calculating the entropy of the resulting model's predictions conditional on the provided labels. Parameters ---------- X: array-like (# samples) An array of values corresponding to one feature in the MDR model Y: array-like (# samples) An array of values corresponding to one feature in the MDR model labels: array-like (# samples) The class labels corresponding to features X and Y base: integer (default: 2) The base in which to calculate MDR conditional entropy Returns ---------- mdr_conditional_entropy: float The MDR conditional entropy calculated according to the equation H(XY|labels) = H(XY,labels) - H(labels) """ return conditional_entropy(_mdr_predict(X, Y, labels), labels, base=base)
[ "Calculates", "the", "MDR", "conditional", "entropy", "H", "(", "XY|labels", ")", "in", "the", "given", "base" ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/utils/utils.py#L220-L243
[ "def", "mdr_conditional_entropy", "(", "X", ",", "Y", ",", "labels", ",", "base", "=", "2", ")", ":", "return", "conditional_entropy", "(", "_mdr_predict", "(", "X", ",", "Y", ",", "labels", ")", ",", "labels", ",", "base", "=", "base", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
mdr_mutual_information
Calculates the MDR mutual information, I(XY;labels), in the given base MDR mutual information is calculated by combining variables X and Y into a single MDR model then calculating the mutual information between the resulting model's predictions and the labels. Parameters ---------- X: array-like (# samples) An array of values corresponding to one feature in the MDR model Y: array-like (# samples) An array of values corresponding to one feature in the MDR model labels: array-like (# samples) The class labels corresponding to features X and Y base: integer (default: 2) The base in which to calculate MDR mutual information Returns ---------- mdr_mutual_information: float The MDR mutual information calculated according to the equation I(XY;labels) = H(labels) - H(labels|XY)
mdr/utils/utils.py
def mdr_mutual_information(X, Y, labels, base=2): """Calculates the MDR mutual information, I(XY;labels), in the given base MDR mutual information is calculated by combining variables X and Y into a single MDR model then calculating the mutual information between the resulting model's predictions and the labels. Parameters ---------- X: array-like (# samples) An array of values corresponding to one feature in the MDR model Y: array-like (# samples) An array of values corresponding to one feature in the MDR model labels: array-like (# samples) The class labels corresponding to features X and Y base: integer (default: 2) The base in which to calculate MDR mutual information Returns ---------- mdr_mutual_information: float The MDR mutual information calculated according to the equation I(XY;labels) = H(labels) - H(labels|XY) """ return mutual_information(_mdr_predict(X, Y, labels), labels, base=base)
def mdr_mutual_information(X, Y, labels, base=2): """Calculates the MDR mutual information, I(XY;labels), in the given base MDR mutual information is calculated by combining variables X and Y into a single MDR model then calculating the mutual information between the resulting model's predictions and the labels. Parameters ---------- X: array-like (# samples) An array of values corresponding to one feature in the MDR model Y: array-like (# samples) An array of values corresponding to one feature in the MDR model labels: array-like (# samples) The class labels corresponding to features X and Y base: integer (default: 2) The base in which to calculate MDR mutual information Returns ---------- mdr_mutual_information: float The MDR mutual information calculated according to the equation I(XY;labels) = H(labels) - H(labels|XY) """ return mutual_information(_mdr_predict(X, Y, labels), labels, base=base)
[ "Calculates", "the", "MDR", "mutual", "information", "I", "(", "XY", ";", "labels", ")", "in", "the", "given", "base" ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/utils/utils.py#L245-L268
[ "def", "mdr_mutual_information", "(", "X", ",", "Y", ",", "labels", ",", "base", "=", "2", ")", ":", "return", "mutual_information", "(", "_mdr_predict", "(", "X", ",", "Y", ",", "labels", ")", ",", "labels", ",", "base", "=", "base", ")" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
n_way_models
Fits a MDR model to all n-way combinations of the features in X. Note that this function performs an exhaustive search through all feature combinations and can be computationally expensive. Parameters ---------- mdr_instance: object An instance of the MDR type to use. X: array-like (# rows, # features) NumPy matrix containing the features y: array-like (# rows, 1) NumPy matrix containing the target values n: list (default: [2]) The maximum size(s) of the MDR model to generate. e.g., if n == [3], all 3-way models will be generated. feature_names: list (default: None) The corresponding names of the features in X. If None, then the features will be named according to their order. Returns ---------- (fitted_model, fitted_model_score, fitted_model_features): tuple of (list, list, list) fitted_model contains the MDR model fitted to the data. fitted_model_score contains the training scores corresponding to the fitted MDR model. fitted_model_features contains a list of the names of the features that were used in the corresponding model.
mdr/utils/utils.py
def n_way_models(mdr_instance, X, y, n=[2], feature_names=None): """Fits a MDR model to all n-way combinations of the features in X. Note that this function performs an exhaustive search through all feature combinations and can be computationally expensive. Parameters ---------- mdr_instance: object An instance of the MDR type to use. X: array-like (# rows, # features) NumPy matrix containing the features y: array-like (# rows, 1) NumPy matrix containing the target values n: list (default: [2]) The maximum size(s) of the MDR model to generate. e.g., if n == [3], all 3-way models will be generated. feature_names: list (default: None) The corresponding names of the features in X. If None, then the features will be named according to their order. Returns ---------- (fitted_model, fitted_model_score, fitted_model_features): tuple of (list, list, list) fitted_model contains the MDR model fitted to the data. fitted_model_score contains the training scores corresponding to the fitted MDR model. fitted_model_features contains a list of the names of the features that were used in the corresponding model. """ if feature_names is None: feature_names = list(range(X.shape[1])) for cur_n in n: for features in itertools.combinations(range(X.shape[1]), cur_n): mdr_model = copy.deepcopy(mdr_instance) mdr_model.fit(X[:, features], y) mdr_model_score = mdr_model.score(X[:, features], y) model_features = [feature_names[feature] for feature in features] yield mdr_model, mdr_model_score, model_features
def n_way_models(mdr_instance, X, y, n=[2], feature_names=None): """Fits a MDR model to all n-way combinations of the features in X. Note that this function performs an exhaustive search through all feature combinations and can be computationally expensive. Parameters ---------- mdr_instance: object An instance of the MDR type to use. X: array-like (# rows, # features) NumPy matrix containing the features y: array-like (# rows, 1) NumPy matrix containing the target values n: list (default: [2]) The maximum size(s) of the MDR model to generate. e.g., if n == [3], all 3-way models will be generated. feature_names: list (default: None) The corresponding names of the features in X. If None, then the features will be named according to their order. Returns ---------- (fitted_model, fitted_model_score, fitted_model_features): tuple of (list, list, list) fitted_model contains the MDR model fitted to the data. fitted_model_score contains the training scores corresponding to the fitted MDR model. fitted_model_features contains a list of the names of the features that were used in the corresponding model. """ if feature_names is None: feature_names = list(range(X.shape[1])) for cur_n in n: for features in itertools.combinations(range(X.shape[1]), cur_n): mdr_model = copy.deepcopy(mdr_instance) mdr_model.fit(X[:, features], y) mdr_model_score = mdr_model.score(X[:, features], y) model_features = [feature_names[feature] for feature in features] yield mdr_model, mdr_model_score, model_features
[ "Fits", "a", "MDR", "model", "to", "all", "n", "-", "way", "combinations", "of", "the", "features", "in", "X", "." ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/utils/utils.py#L270-L307
[ "def", "n_way_models", "(", "mdr_instance", ",", "X", ",", "y", ",", "n", "=", "[", "2", "]", ",", "feature_names", "=", "None", ")", ":", "if", "feature_names", "is", "None", ":", "feature_names", "=", "list", "(", "range", "(", "X", ".", "shape", "[", "1", "]", ")", ")", "for", "cur_n", "in", "n", ":", "for", "features", "in", "itertools", ".", "combinations", "(", "range", "(", "X", ".", "shape", "[", "1", "]", ")", ",", "cur_n", ")", ":", "mdr_model", "=", "copy", ".", "deepcopy", "(", "mdr_instance", ")", "mdr_model", ".", "fit", "(", "X", "[", ":", ",", "features", "]", ",", "y", ")", "mdr_model_score", "=", "mdr_model", ".", "score", "(", "X", "[", ":", ",", "features", "]", ",", "y", ")", "model_features", "=", "[", "feature_names", "[", "feature", "]", "for", "feature", "in", "features", "]", "yield", "mdr_model", ",", "mdr_model_score", ",", "model_features" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
plot_mdr_grid
Visualizes the MDR grid of a given fitted MDR instance. Only works for 2-way MDR models. This function is currently incomplete. Parameters ---------- mdr_instance: object A fitted instance of the MDR type to visualize. Returns ---------- fig: matplotlib.figure Figure object for the visualized MDR grid.
mdr/utils/utils.py
def plot_mdr_grid(mdr_instance): """Visualizes the MDR grid of a given fitted MDR instance. Only works for 2-way MDR models. This function is currently incomplete. Parameters ---------- mdr_instance: object A fitted instance of the MDR type to visualize. Returns ---------- fig: matplotlib.figure Figure object for the visualized MDR grid. """ var1_levels = list(set([variables[0] for variables in mdr_instance.feature_map])) var2_levels = list(set([variables[1] for variables in mdr_instance.feature_map])) max_count = np.array(list(mdr_instance.class_count_matrix.values())).flatten().max() """ TODO: - Add common axis labels - Make sure this scales for smaller and larger record sizes - Extend to 3-way+ models, e.g., http://4.bp.blogspot.com/-vgKCjEkWFUc/UPwPuHo6XvI/AAAAAAAAAE0/fORHqDcoikE/s1600/model.jpg """ fig, splots = plt.subplots(ncols=len(var1_levels), nrows=len(var2_levels), sharey=True, sharex=True) fig.set_figwidth(6) fig.set_figheight(6) for (var1, var2) in itertools.product(var1_levels, var2_levels): class_counts = mdr_instance.class_count_matrix[(var1, var2)] splot = splots[var2_levels.index(var2)][var1_levels.index(var1)] splot.set_yticks([]) splot.set_xticks([]) splot.set_ylim(0, max_count * 1.5) splot.set_xlim(-0.5, 1.5) if var2_levels.index(var2) == 0: splot.set_title('X1 = {}'.format(var1), fontsize=12) if var1_levels.index(var1) == 0: splot.set_ylabel('X2 = {}'.format(var2), fontsize=12) bars = splot.bar(left=range(class_counts.shape[0]), height=class_counts, width=0.5, color='black', align='center') bgcolor = 'lightgrey' if mdr_instance.feature_map[(var1, var2)] == 0 else 'darkgrey' splot.set_axis_bgcolor(bgcolor) for index, bar in enumerate(bars): splot.text(index, class_counts[index] + (max_count * 0.1), class_counts[index], ha='center') fig.tight_layout() return fig
def plot_mdr_grid(mdr_instance): """Visualizes the MDR grid of a given fitted MDR instance. Only works for 2-way MDR models. This function is currently incomplete. Parameters ---------- mdr_instance: object A fitted instance of the MDR type to visualize. Returns ---------- fig: matplotlib.figure Figure object for the visualized MDR grid. """ var1_levels = list(set([variables[0] for variables in mdr_instance.feature_map])) var2_levels = list(set([variables[1] for variables in mdr_instance.feature_map])) max_count = np.array(list(mdr_instance.class_count_matrix.values())).flatten().max() """ TODO: - Add common axis labels - Make sure this scales for smaller and larger record sizes - Extend to 3-way+ models, e.g., http://4.bp.blogspot.com/-vgKCjEkWFUc/UPwPuHo6XvI/AAAAAAAAAE0/fORHqDcoikE/s1600/model.jpg """ fig, splots = plt.subplots(ncols=len(var1_levels), nrows=len(var2_levels), sharey=True, sharex=True) fig.set_figwidth(6) fig.set_figheight(6) for (var1, var2) in itertools.product(var1_levels, var2_levels): class_counts = mdr_instance.class_count_matrix[(var1, var2)] splot = splots[var2_levels.index(var2)][var1_levels.index(var1)] splot.set_yticks([]) splot.set_xticks([]) splot.set_ylim(0, max_count * 1.5) splot.set_xlim(-0.5, 1.5) if var2_levels.index(var2) == 0: splot.set_title('X1 = {}'.format(var1), fontsize=12) if var1_levels.index(var1) == 0: splot.set_ylabel('X2 = {}'.format(var2), fontsize=12) bars = splot.bar(left=range(class_counts.shape[0]), height=class_counts, width=0.5, color='black', align='center') bgcolor = 'lightgrey' if mdr_instance.feature_map[(var1, var2)] == 0 else 'darkgrey' splot.set_axis_bgcolor(bgcolor) for index, bar in enumerate(bars): splot.text(index, class_counts[index] + (max_count * 0.1), class_counts[index], ha='center') fig.tight_layout() return fig
[ "Visualizes", "the", "MDR", "grid", "of", "a", "given", "fitted", "MDR", "instance", ".", "Only", "works", "for", "2", "-", "way", "MDR", "models", ".", "This", "function", "is", "currently", "incomplete", "." ]
EpistasisLab/scikit-mdr
python
https://github.com/EpistasisLab/scikit-mdr/blob/768565deb10467d04a960d27e000ab38b7aa8a62/mdr/utils/utils.py#L309-L363
[ "def", "plot_mdr_grid", "(", "mdr_instance", ")", ":", "var1_levels", "=", "list", "(", "set", "(", "[", "variables", "[", "0", "]", "for", "variables", "in", "mdr_instance", ".", "feature_map", "]", ")", ")", "var2_levels", "=", "list", "(", "set", "(", "[", "variables", "[", "1", "]", "for", "variables", "in", "mdr_instance", ".", "feature_map", "]", ")", ")", "max_count", "=", "np", ".", "array", "(", "list", "(", "mdr_instance", ".", "class_count_matrix", ".", "values", "(", ")", ")", ")", ".", "flatten", "(", ")", ".", "max", "(", ")", "\"\"\"\n TODO:\n - Add common axis labels\n - Make sure this scales for smaller and larger record sizes\n - Extend to 3-way+ models, e.g., http://4.bp.blogspot.com/-vgKCjEkWFUc/UPwPuHo6XvI/AAAAAAAAAE0/fORHqDcoikE/s1600/model.jpg\n \"\"\"", "fig", ",", "splots", "=", "plt", ".", "subplots", "(", "ncols", "=", "len", "(", "var1_levels", ")", ",", "nrows", "=", "len", "(", "var2_levels", ")", ",", "sharey", "=", "True", ",", "sharex", "=", "True", ")", "fig", ".", "set_figwidth", "(", "6", ")", "fig", ".", "set_figheight", "(", "6", ")", "for", "(", "var1", ",", "var2", ")", "in", "itertools", ".", "product", "(", "var1_levels", ",", "var2_levels", ")", ":", "class_counts", "=", "mdr_instance", ".", "class_count_matrix", "[", "(", "var1", ",", "var2", ")", "]", "splot", "=", "splots", "[", "var2_levels", ".", "index", "(", "var2", ")", "]", "[", "var1_levels", ".", "index", "(", "var1", ")", "]", "splot", ".", "set_yticks", "(", "[", "]", ")", "splot", ".", "set_xticks", "(", "[", "]", ")", "splot", ".", "set_ylim", "(", "0", ",", "max_count", "*", "1.5", ")", "splot", ".", "set_xlim", "(", "-", "0.5", ",", "1.5", ")", "if", "var2_levels", ".", "index", "(", "var2", ")", "==", "0", ":", "splot", ".", "set_title", "(", "'X1 = {}'", ".", "format", "(", "var1", ")", ",", "fontsize", "=", "12", ")", "if", "var1_levels", ".", "index", "(", "var1", ")", "==", "0", ":", "splot", ".", "set_ylabel", "(", "'X2 = {}'", ".", "format", "(", "var2", ")", ",", "fontsize", "=", "12", ")", "bars", "=", "splot", ".", "bar", "(", "left", "=", "range", "(", "class_counts", ".", "shape", "[", "0", "]", ")", ",", "height", "=", "class_counts", ",", "width", "=", "0.5", ",", "color", "=", "'black'", ",", "align", "=", "'center'", ")", "bgcolor", "=", "'lightgrey'", "if", "mdr_instance", ".", "feature_map", "[", "(", "var1", ",", "var2", ")", "]", "==", "0", "else", "'darkgrey'", "splot", ".", "set_axis_bgcolor", "(", "bgcolor", ")", "for", "index", ",", "bar", "in", "enumerate", "(", "bars", ")", ":", "splot", ".", "text", "(", "index", ",", "class_counts", "[", "index", "]", "+", "(", "max_count", "*", "0.1", ")", ",", "class_counts", "[", "index", "]", ",", "ha", "=", "'center'", ")", "fig", ".", "tight_layout", "(", ")", "return", "fig" ]
768565deb10467d04a960d27e000ab38b7aa8a62
test
makemigrations
等价于 django makemigrations 操作
fantasy/cli.py
def makemigrations(migrations_root): """等价于 django makemigrations 操作""" from flask_migrate import (Migrate, init as migrate_init, migrate as migrate_exec) migrations_root = migrations_root or os.path.join( os.environ.get('FANTASY_MIGRATION_PATH', os.getcwd()), 'migrations') migrations_root = os.path.expanduser(migrations_root) mig = Migrate(app, app.db, directory=migrations_root) if not os.path.exists(migrations_root): migrate_init(migrations_root) pass models_file = os.path.join(migrations_root, 'models.txt') if not os.path.exists(models_file): with open(models_file, 'w') as fw: fw.write('# add module name in this file.') pass pass with open(models_file, 'r') as fp: modules = fp.readlines() pass modules = filter(lambda x: x.strip("\n"), modules) modules = map(lambda x: x.strip("\n").split("#")[0].strip(), modules) modules = list(filter(lambda x: x, modules)) if not modules: click.echo( click.style('No models found,' 'skip create migrations...' 'You need edit models.txt file set your module', fg='yellow')) sys.exit(0) for m in modules: importlib.import_module(m + '.models') pass migrate_exec(migrations_root) mig.init_app(app, app.db) pass
def makemigrations(migrations_root): """等价于 django makemigrations 操作""" from flask_migrate import (Migrate, init as migrate_init, migrate as migrate_exec) migrations_root = migrations_root or os.path.join( os.environ.get('FANTASY_MIGRATION_PATH', os.getcwd()), 'migrations') migrations_root = os.path.expanduser(migrations_root) mig = Migrate(app, app.db, directory=migrations_root) if not os.path.exists(migrations_root): migrate_init(migrations_root) pass models_file = os.path.join(migrations_root, 'models.txt') if not os.path.exists(models_file): with open(models_file, 'w') as fw: fw.write('# add module name in this file.') pass pass with open(models_file, 'r') as fp: modules = fp.readlines() pass modules = filter(lambda x: x.strip("\n"), modules) modules = map(lambda x: x.strip("\n").split("#")[0].strip(), modules) modules = list(filter(lambda x: x, modules)) if not modules: click.echo( click.style('No models found,' 'skip create migrations...' 'You need edit models.txt file set your module', fg='yellow')) sys.exit(0) for m in modules: importlib.import_module(m + '.models') pass migrate_exec(migrations_root) mig.init_app(app, app.db) pass
[ "等价于", "django", "makemigrations", "操作" ]
wangwenpei/fantasy
python
https://github.com/wangwenpei/fantasy/blob/0fe92059bd868f14da84235beb05b217b1d46e4a/fantasy/cli.py#L29-L77
[ "def", "makemigrations", "(", "migrations_root", ")", ":", "from", "flask_migrate", "import", "(", "Migrate", ",", "init", "as", "migrate_init", ",", "migrate", "as", "migrate_exec", ")", "migrations_root", "=", "migrations_root", "or", "os", ".", "path", ".", "join", "(", "os", ".", "environ", ".", "get", "(", "'FANTASY_MIGRATION_PATH'", ",", "os", ".", "getcwd", "(", ")", ")", ",", "'migrations'", ")", "migrations_root", "=", "os", ".", "path", ".", "expanduser", "(", "migrations_root", ")", "mig", "=", "Migrate", "(", "app", ",", "app", ".", "db", ",", "directory", "=", "migrations_root", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "migrations_root", ")", ":", "migrate_init", "(", "migrations_root", ")", "pass", "models_file", "=", "os", ".", "path", ".", "join", "(", "migrations_root", ",", "'models.txt'", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "models_file", ")", ":", "with", "open", "(", "models_file", ",", "'w'", ")", "as", "fw", ":", "fw", ".", "write", "(", "'# add module name in this file.'", ")", "pass", "pass", "with", "open", "(", "models_file", ",", "'r'", ")", "as", "fp", ":", "modules", "=", "fp", ".", "readlines", "(", ")", "pass", "modules", "=", "filter", "(", "lambda", "x", ":", "x", ".", "strip", "(", "\"\\n\"", ")", ",", "modules", ")", "modules", "=", "map", "(", "lambda", "x", ":", "x", ".", "strip", "(", "\"\\n\"", ")", ".", "split", "(", "\"#\"", ")", "[", "0", "]", ".", "strip", "(", ")", ",", "modules", ")", "modules", "=", "list", "(", "filter", "(", "lambda", "x", ":", "x", ",", "modules", ")", ")", "if", "not", "modules", ":", "click", ".", "echo", "(", "click", ".", "style", "(", "'No models found,'", "'skip create migrations...'", "'You need edit models.txt file set your module'", ",", "fg", "=", "'yellow'", ")", ")", "sys", ".", "exit", "(", "0", ")", "for", "m", "in", "modules", ":", "importlib", ".", "import_module", "(", "m", "+", "'.models'", ")", "pass", "migrate_exec", "(", "migrations_root", ")", "mig", ".", "init_app", "(", "app", ",", "app", ".", "db", ")", "pass" ]
0fe92059bd868f14da84235beb05b217b1d46e4a
test
migrate
等价于 django migrate 操作
fantasy/cli.py
def migrate(migrations_root): """等价于 django migrate 操作""" from flask_migrate import Migrate, upgrade as migrate_upgrade from flask_sqlalchemy import SQLAlchemy from sqlalchemy.engine.url import make_url from sqlalchemy_utils import database_exists, create_database db = SQLAlchemy() dsn = make_url(app.config['SQLALCHEMY_DATABASE_URI']) if not database_exists(dsn): create_database(dsn) pass migrations_root = migrations_root or os.path.join( os.environ.get('FANTASY_MIGRATION_PATH', os.getcwd()), 'migrations') migrations_root = os.path.expanduser(migrations_root) if os.path.exists(migrations_root): mig = Migrate(app, db, directory=migrations_root) mig.init_app(app, db) migrate_upgrade(migrations_root) else: click.echo( click.style('migration files not exist,skip migrate...', fg='red')) sys.exit(-1) pass
def migrate(migrations_root): """等价于 django migrate 操作""" from flask_migrate import Migrate, upgrade as migrate_upgrade from flask_sqlalchemy import SQLAlchemy from sqlalchemy.engine.url import make_url from sqlalchemy_utils import database_exists, create_database db = SQLAlchemy() dsn = make_url(app.config['SQLALCHEMY_DATABASE_URI']) if not database_exists(dsn): create_database(dsn) pass migrations_root = migrations_root or os.path.join( os.environ.get('FANTASY_MIGRATION_PATH', os.getcwd()), 'migrations') migrations_root = os.path.expanduser(migrations_root) if os.path.exists(migrations_root): mig = Migrate(app, db, directory=migrations_root) mig.init_app(app, db) migrate_upgrade(migrations_root) else: click.echo( click.style('migration files not exist,skip migrate...', fg='red')) sys.exit(-1) pass
[ "等价于", "django", "migrate", "操作" ]
wangwenpei/fantasy
python
https://github.com/wangwenpei/fantasy/blob/0fe92059bd868f14da84235beb05b217b1d46e4a/fantasy/cli.py#L83-L110
[ "def", "migrate", "(", "migrations_root", ")", ":", "from", "flask_migrate", "import", "Migrate", ",", "upgrade", "as", "migrate_upgrade", "from", "flask_sqlalchemy", "import", "SQLAlchemy", "from", "sqlalchemy", ".", "engine", ".", "url", "import", "make_url", "from", "sqlalchemy_utils", "import", "database_exists", ",", "create_database", "db", "=", "SQLAlchemy", "(", ")", "dsn", "=", "make_url", "(", "app", ".", "config", "[", "'SQLALCHEMY_DATABASE_URI'", "]", ")", "if", "not", "database_exists", "(", "dsn", ")", ":", "create_database", "(", "dsn", ")", "pass", "migrations_root", "=", "migrations_root", "or", "os", ".", "path", ".", "join", "(", "os", ".", "environ", ".", "get", "(", "'FANTASY_MIGRATION_PATH'", ",", "os", ".", "getcwd", "(", ")", ")", ",", "'migrations'", ")", "migrations_root", "=", "os", ".", "path", ".", "expanduser", "(", "migrations_root", ")", "if", "os", ".", "path", ".", "exists", "(", "migrations_root", ")", ":", "mig", "=", "Migrate", "(", "app", ",", "db", ",", "directory", "=", "migrations_root", ")", "mig", ".", "init_app", "(", "app", ",", "db", ")", "migrate_upgrade", "(", "migrations_root", ")", "else", ":", "click", ".", "echo", "(", "click", ".", "style", "(", "'migration files not exist,skip migrate...'", ",", "fg", "=", "'red'", ")", ")", "sys", ".", "exit", "(", "-", "1", ")", "pass" ]
0fe92059bd868f14da84235beb05b217b1d46e4a
test
requirements
编译全新依赖文件
fantasy/cli.py
def requirements(work_dir, hive_root, with_requirements, with_dockerfile, active_module, active_module_file): """编译全新依赖文件""" import sys sys.path.insert(0, hive_root) hive_root = os.path.abspath(os.path.expanduser(hive_root)) work_dir = work_dir or os.path.join( os.environ.get('FANTASY_APP_PATH', os.getcwd())) work_dir = os.path.expanduser(work_dir) requirements_root = os.path.join(work_dir, 'requirements') migrate_root = os.path.join(work_dir, 'migrations') # active_modules 严格按照顺序 active_module_paths = [] active_module_list = [] if active_module_file: with open(active_module_file, 'r') as fp: for l in fp: pkg = l.split('#')[0].strip() if pkg: active_module_list.append(l.strip("\n")) pass active_module_list += active_module for m in active_module_list: try: mod = importlib.import_module(m) active_module_paths.append(os.path.dirname(mod.__file__)) except ImportError: click.echo('module "%s" not found.' % m, color="yellow") pass pass def build_requirements(): """构造requirements文件 requirements文件共分为两份: - hive.txt 从hive项目中直接复制 - hive-modules.txt 从指定的模块中装载依赖项 .. note:: requirements要求必须是顺序无关的 因为我们会使用set来去重,并按照value排序 """ if not os.path.exists(requirements_root): os.makedirs(requirements_root) pass click.echo(click.style("Generate hive requirements...", fg="yellow")) shutil.copy( os.path.join(hive_root, 'requirements.txt'), os.path.join(requirements_root, 'hive.txt') ) click.echo(click.style("Generate hive-module requirements...", fg="yellow")) requirements_files = [] for m in active_module_paths: t = os.path.join(m, 'requirements.txt') if os.path.exists(t): requirements_files.append(t) pass module_packages = set() with fileinput.input(requirements_files) as fp: for line in fp: pkg = line.split('#')[0].strip() if pkg: module_packages.add(pkg) pass with click.open_file( os.path.join(requirements_root, 'hive-modules.txt'), 'w') as fp: for p in module_packages: fp.write("%s\n" % p) pass pass def build_dockerfile(): """构造Dockerfile""" modules_in_hive = map( lambda x: x.replace(hive_root, '').lstrip('/'), filter(lambda x: x.startswith(hive_root), active_module_paths)) modules_path = ' '.join(modules_in_hive) docker_file = os.path.join( os.path.dirname(requirements_root), 'Dockerfile' ) # update Dockerfile if os.path.exists(docker_file): click.echo(click.style("Found Dockerfile,try update...", fg="yellow")) with open(docker_file, 'r') as fp: buffer = fp.read() pass import re replaced = re.sub('ARG HIVE_PACKAGES=".*"', 'ARG HIVE_PACKAGES="%s"' % modules_path, buffer) with open(docker_file, 'w') as fp: fp.write(replaced) pass pass pass def build_migrations(): models_pairs = filter( lambda pair: os.path.exists(pair[0]), map(lambda x: (os.path.join(x[0], 'models.py'), x[1]), [(v, active_module_list[i]) for i, v in enumerate(active_module_paths)])) try: _, models = zip(*models_pairs) except ValueError: click.echo(click.style("No models found," "is it include in " "your PYTHONPATH?\n" "Modules: %s" % ','.join(active_module_list), fg="yellow")) return click.echo(click.style("Found models.txt,try update...", fg="yellow")) with open(os.path.join(migrate_root, 'models.txt'), 'w') as fp: for p in models: fp.write("%s\n" % p) pass pass def build_tasks(): tasks_pairs = filter( lambda pair: os.path.exists(pair[0]), map(lambda x: (os.path.join(x[0], 'tasks.py'), x[1]), [(v, active_module_list[i]) for i, v in enumerate(active_module_paths)])) try: _, tasks = zip(*tasks_pairs) except ValueError: click.echo(click.style("No tasks found," "is it include in " "your PYTHONPATH?\n" "Modules: %s" % ','.join(active_module_list), fg="yellow")) return click.echo(click.style("Found tasks.txt,try update...", fg="yellow")) with open(os.path.join(migrate_root, 'tasks.txt'), 'w') as fp: for p in tasks: fp.write("%s\n" % p) pass if with_requirements: build_requirements() if with_dockerfile: build_dockerfile() if os.path.exists(migrate_root): build_migrations() if os.path.exists(migrate_root): build_tasks() click.echo(click.style("Generate done...", fg="yellow")) pass
def requirements(work_dir, hive_root, with_requirements, with_dockerfile, active_module, active_module_file): """编译全新依赖文件""" import sys sys.path.insert(0, hive_root) hive_root = os.path.abspath(os.path.expanduser(hive_root)) work_dir = work_dir or os.path.join( os.environ.get('FANTASY_APP_PATH', os.getcwd())) work_dir = os.path.expanduser(work_dir) requirements_root = os.path.join(work_dir, 'requirements') migrate_root = os.path.join(work_dir, 'migrations') # active_modules 严格按照顺序 active_module_paths = [] active_module_list = [] if active_module_file: with open(active_module_file, 'r') as fp: for l in fp: pkg = l.split('#')[0].strip() if pkg: active_module_list.append(l.strip("\n")) pass active_module_list += active_module for m in active_module_list: try: mod = importlib.import_module(m) active_module_paths.append(os.path.dirname(mod.__file__)) except ImportError: click.echo('module "%s" not found.' % m, color="yellow") pass pass def build_requirements(): """构造requirements文件 requirements文件共分为两份: - hive.txt 从hive项目中直接复制 - hive-modules.txt 从指定的模块中装载依赖项 .. note:: requirements要求必须是顺序无关的 因为我们会使用set来去重,并按照value排序 """ if not os.path.exists(requirements_root): os.makedirs(requirements_root) pass click.echo(click.style("Generate hive requirements...", fg="yellow")) shutil.copy( os.path.join(hive_root, 'requirements.txt'), os.path.join(requirements_root, 'hive.txt') ) click.echo(click.style("Generate hive-module requirements...", fg="yellow")) requirements_files = [] for m in active_module_paths: t = os.path.join(m, 'requirements.txt') if os.path.exists(t): requirements_files.append(t) pass module_packages = set() with fileinput.input(requirements_files) as fp: for line in fp: pkg = line.split('#')[0].strip() if pkg: module_packages.add(pkg) pass with click.open_file( os.path.join(requirements_root, 'hive-modules.txt'), 'w') as fp: for p in module_packages: fp.write("%s\n" % p) pass pass def build_dockerfile(): """构造Dockerfile""" modules_in_hive = map( lambda x: x.replace(hive_root, '').lstrip('/'), filter(lambda x: x.startswith(hive_root), active_module_paths)) modules_path = ' '.join(modules_in_hive) docker_file = os.path.join( os.path.dirname(requirements_root), 'Dockerfile' ) # update Dockerfile if os.path.exists(docker_file): click.echo(click.style("Found Dockerfile,try update...", fg="yellow")) with open(docker_file, 'r') as fp: buffer = fp.read() pass import re replaced = re.sub('ARG HIVE_PACKAGES=".*"', 'ARG HIVE_PACKAGES="%s"' % modules_path, buffer) with open(docker_file, 'w') as fp: fp.write(replaced) pass pass pass def build_migrations(): models_pairs = filter( lambda pair: os.path.exists(pair[0]), map(lambda x: (os.path.join(x[0], 'models.py'), x[1]), [(v, active_module_list[i]) for i, v in enumerate(active_module_paths)])) try: _, models = zip(*models_pairs) except ValueError: click.echo(click.style("No models found," "is it include in " "your PYTHONPATH?\n" "Modules: %s" % ','.join(active_module_list), fg="yellow")) return click.echo(click.style("Found models.txt,try update...", fg="yellow")) with open(os.path.join(migrate_root, 'models.txt'), 'w') as fp: for p in models: fp.write("%s\n" % p) pass pass def build_tasks(): tasks_pairs = filter( lambda pair: os.path.exists(pair[0]), map(lambda x: (os.path.join(x[0], 'tasks.py'), x[1]), [(v, active_module_list[i]) for i, v in enumerate(active_module_paths)])) try: _, tasks = zip(*tasks_pairs) except ValueError: click.echo(click.style("No tasks found," "is it include in " "your PYTHONPATH?\n" "Modules: %s" % ','.join(active_module_list), fg="yellow")) return click.echo(click.style("Found tasks.txt,try update...", fg="yellow")) with open(os.path.join(migrate_root, 'tasks.txt'), 'w') as fp: for p in tasks: fp.write("%s\n" % p) pass if with_requirements: build_requirements() if with_dockerfile: build_dockerfile() if os.path.exists(migrate_root): build_migrations() if os.path.exists(migrate_root): build_tasks() click.echo(click.style("Generate done...", fg="yellow")) pass
[ "编译全新依赖文件" ]
wangwenpei/fantasy
python
https://github.com/wangwenpei/fantasy/blob/0fe92059bd868f14da84235beb05b217b1d46e4a/fantasy/cli.py#L124-L314
[ "def", "requirements", "(", "work_dir", ",", "hive_root", ",", "with_requirements", ",", "with_dockerfile", ",", "active_module", ",", "active_module_file", ")", ":", "import", "sys", "sys", ".", "path", ".", "insert", "(", "0", ",", "hive_root", ")", "hive_root", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "expanduser", "(", "hive_root", ")", ")", "work_dir", "=", "work_dir", "or", "os", ".", "path", ".", "join", "(", "os", ".", "environ", ".", "get", "(", "'FANTASY_APP_PATH'", ",", "os", ".", "getcwd", "(", ")", ")", ")", "work_dir", "=", "os", ".", "path", ".", "expanduser", "(", "work_dir", ")", "requirements_root", "=", "os", ".", "path", ".", "join", "(", "work_dir", ",", "'requirements'", ")", "migrate_root", "=", "os", ".", "path", ".", "join", "(", "work_dir", ",", "'migrations'", ")", "# active_modules 严格按照顺序", "active_module_paths", "=", "[", "]", "active_module_list", "=", "[", "]", "if", "active_module_file", ":", "with", "open", "(", "active_module_file", ",", "'r'", ")", "as", "fp", ":", "for", "l", "in", "fp", ":", "pkg", "=", "l", ".", "split", "(", "'#'", ")", "[", "0", "]", ".", "strip", "(", ")", "if", "pkg", ":", "active_module_list", ".", "append", "(", "l", ".", "strip", "(", "\"\\n\"", ")", ")", "pass", "active_module_list", "+=", "active_module", "for", "m", "in", "active_module_list", ":", "try", ":", "mod", "=", "importlib", ".", "import_module", "(", "m", ")", "active_module_paths", ".", "append", "(", "os", ".", "path", ".", "dirname", "(", "mod", ".", "__file__", ")", ")", "except", "ImportError", ":", "click", ".", "echo", "(", "'module \"%s\" not found.'", "%", "m", ",", "color", "=", "\"yellow\"", ")", "pass", "pass", "def", "build_requirements", "(", ")", ":", "\"\"\"构造requirements文件\n\n requirements文件共分为两份:\n\n - hive.txt 从hive项目中直接复制\n - hive-modules.txt 从指定的模块中装载依赖项\n\n .. note::\n requirements要求必须是顺序无关的\n 因为我们会使用set来去重,并按照value排序\n\n \"\"\"", "if", "not", "os", ".", "path", ".", "exists", "(", "requirements_root", ")", ":", "os", ".", "makedirs", "(", "requirements_root", ")", "pass", "click", ".", "echo", "(", "click", ".", "style", "(", "\"Generate hive requirements...\"", ",", "fg", "=", "\"yellow\"", ")", ")", "shutil", ".", "copy", "(", "os", ".", "path", ".", "join", "(", "hive_root", ",", "'requirements.txt'", ")", ",", "os", ".", "path", ".", "join", "(", "requirements_root", ",", "'hive.txt'", ")", ")", "click", ".", "echo", "(", "click", ".", "style", "(", "\"Generate hive-module requirements...\"", ",", "fg", "=", "\"yellow\"", ")", ")", "requirements_files", "=", "[", "]", "for", "m", "in", "active_module_paths", ":", "t", "=", "os", ".", "path", ".", "join", "(", "m", ",", "'requirements.txt'", ")", "if", "os", ".", "path", ".", "exists", "(", "t", ")", ":", "requirements_files", ".", "append", "(", "t", ")", "pass", "module_packages", "=", "set", "(", ")", "with", "fileinput", ".", "input", "(", "requirements_files", ")", "as", "fp", ":", "for", "line", "in", "fp", ":", "pkg", "=", "line", ".", "split", "(", "'#'", ")", "[", "0", "]", ".", "strip", "(", ")", "if", "pkg", ":", "module_packages", ".", "add", "(", "pkg", ")", "pass", "with", "click", ".", "open_file", "(", "os", ".", "path", ".", "join", "(", "requirements_root", ",", "'hive-modules.txt'", ")", ",", "'w'", ")", "as", "fp", ":", "for", "p", "in", "module_packages", ":", "fp", ".", "write", "(", "\"%s\\n\"", "%", "p", ")", "pass", "pass", "def", "build_dockerfile", "(", ")", ":", "\"\"\"构造Dockerfile\"\"\"", "modules_in_hive", "=", "map", "(", "lambda", "x", ":", "x", ".", "replace", "(", "hive_root", ",", "''", ")", ".", "lstrip", "(", "'/'", ")", ",", "filter", "(", "lambda", "x", ":", "x", ".", "startswith", "(", "hive_root", ")", ",", "active_module_paths", ")", ")", "modules_path", "=", "' '", ".", "join", "(", "modules_in_hive", ")", "docker_file", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "dirname", "(", "requirements_root", ")", ",", "'Dockerfile'", ")", "# update Dockerfile", "if", "os", ".", "path", ".", "exists", "(", "docker_file", ")", ":", "click", ".", "echo", "(", "click", ".", "style", "(", "\"Found Dockerfile,try update...\"", ",", "fg", "=", "\"yellow\"", ")", ")", "with", "open", "(", "docker_file", ",", "'r'", ")", "as", "fp", ":", "buffer", "=", "fp", ".", "read", "(", ")", "pass", "import", "re", "replaced", "=", "re", ".", "sub", "(", "'ARG HIVE_PACKAGES=\".*\"'", ",", "'ARG HIVE_PACKAGES=\"%s\"'", "%", "modules_path", ",", "buffer", ")", "with", "open", "(", "docker_file", ",", "'w'", ")", "as", "fp", ":", "fp", ".", "write", "(", "replaced", ")", "pass", "pass", "pass", "def", "build_migrations", "(", ")", ":", "models_pairs", "=", "filter", "(", "lambda", "pair", ":", "os", ".", "path", ".", "exists", "(", "pair", "[", "0", "]", ")", ",", "map", "(", "lambda", "x", ":", "(", "os", ".", "path", ".", "join", "(", "x", "[", "0", "]", ",", "'models.py'", ")", ",", "x", "[", "1", "]", ")", ",", "[", "(", "v", ",", "active_module_list", "[", "i", "]", ")", "for", "i", ",", "v", "in", "enumerate", "(", "active_module_paths", ")", "]", ")", ")", "try", ":", "_", ",", "models", "=", "zip", "(", "*", "models_pairs", ")", "except", "ValueError", ":", "click", ".", "echo", "(", "click", ".", "style", "(", "\"No models found,\"", "\"is it include in \"", "\"your PYTHONPATH?\\n\"", "\"Modules: %s\"", "%", "','", ".", "join", "(", "active_module_list", ")", ",", "fg", "=", "\"yellow\"", ")", ")", "return", "click", ".", "echo", "(", "click", ".", "style", "(", "\"Found models.txt,try update...\"", ",", "fg", "=", "\"yellow\"", ")", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "migrate_root", ",", "'models.txt'", ")", ",", "'w'", ")", "as", "fp", ":", "for", "p", "in", "models", ":", "fp", ".", "write", "(", "\"%s\\n\"", "%", "p", ")", "pass", "pass", "def", "build_tasks", "(", ")", ":", "tasks_pairs", "=", "filter", "(", "lambda", "pair", ":", "os", ".", "path", ".", "exists", "(", "pair", "[", "0", "]", ")", ",", "map", "(", "lambda", "x", ":", "(", "os", ".", "path", ".", "join", "(", "x", "[", "0", "]", ",", "'tasks.py'", ")", ",", "x", "[", "1", "]", ")", ",", "[", "(", "v", ",", "active_module_list", "[", "i", "]", ")", "for", "i", ",", "v", "in", "enumerate", "(", "active_module_paths", ")", "]", ")", ")", "try", ":", "_", ",", "tasks", "=", "zip", "(", "*", "tasks_pairs", ")", "except", "ValueError", ":", "click", ".", "echo", "(", "click", ".", "style", "(", "\"No tasks found,\"", "\"is it include in \"", "\"your PYTHONPATH?\\n\"", "\"Modules: %s\"", "%", "','", ".", "join", "(", "active_module_list", ")", ",", "fg", "=", "\"yellow\"", ")", ")", "return", "click", ".", "echo", "(", "click", ".", "style", "(", "\"Found tasks.txt,try update...\"", ",", "fg", "=", "\"yellow\"", ")", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "migrate_root", ",", "'tasks.txt'", ")", ",", "'w'", ")", "as", "fp", ":", "for", "p", "in", "tasks", ":", "fp", ".", "write", "(", "\"%s\\n\"", "%", "p", ")", "pass", "if", "with_requirements", ":", "build_requirements", "(", ")", "if", "with_dockerfile", ":", "build_dockerfile", "(", ")", "if", "os", ".", "path", ".", "exists", "(", "migrate_root", ")", ":", "build_migrations", "(", ")", "if", "os", ".", "path", ".", "exists", "(", "migrate_root", ")", ":", "build_tasks", "(", ")", "click", ".", "echo", "(", "click", ".", "style", "(", "\"Generate done...\"", ",", "fg", "=", "\"yellow\"", ")", ")", "pass" ]
0fe92059bd868f14da84235beb05b217b1d46e4a
test
queue
启动队列服务[开发中]
fantasy/cli.py
def queue(celery_arguments): """启动队列服务[开发中]""" if not app.celery: return click.echo( click.style('No celery config found,skip start...', fg='yellow')) celery = app.celery celery.autodiscover_tasks() argv = celery_arguments.split() argv.insert(0, 'worker') argv.insert(0, 'Queue') celery.worker_main(argv) pass
def queue(celery_arguments): """启动队列服务[开发中]""" if not app.celery: return click.echo( click.style('No celery config found,skip start...', fg='yellow')) celery = app.celery celery.autodiscover_tasks() argv = celery_arguments.split() argv.insert(0, 'worker') argv.insert(0, 'Queue') celery.worker_main(argv) pass
[ "启动队列服务", "[", "开发中", "]" ]
wangwenpei/fantasy
python
https://github.com/wangwenpei/fantasy/blob/0fe92059bd868f14da84235beb05b217b1d46e4a/fantasy/cli.py#L321-L335
[ "def", "queue", "(", "celery_arguments", ")", ":", "if", "not", "app", ".", "celery", ":", "return", "click", ".", "echo", "(", "click", ".", "style", "(", "'No celery config found,skip start...', ", "f", "='", "y", "ellow'))", "", "", "celery", "=", "app", ".", "celery", "celery", ".", "autodiscover_tasks", "(", ")", "argv", "=", "celery_arguments", ".", "split", "(", ")", "argv", ".", "insert", "(", "0", ",", "'worker'", ")", "argv", ".", "insert", "(", "0", ",", "'Queue'", ")", "celery", ".", "worker_main", "(", "argv", ")", "pass" ]
0fe92059bd868f14da84235beb05b217b1d46e4a
test
smart_database
尝试对数据库做初始化操作
fantasy/__init__.py
def smart_database(app): """尝试对数据库做初始化操作""" from sqlalchemy.engine.url import make_url from sqlalchemy_utils import database_exists, create_database # 如果数据库不存在,则尝试创建数据 dsn = make_url(app.config['SQLALCHEMY_DATABASE_URI']) if not database_exists(dsn): create_database(dsn) pass pass
def smart_database(app): """尝试对数据库做初始化操作""" from sqlalchemy.engine.url import make_url from sqlalchemy_utils import database_exists, create_database # 如果数据库不存在,则尝试创建数据 dsn = make_url(app.config['SQLALCHEMY_DATABASE_URI']) if not database_exists(dsn): create_database(dsn) pass pass
[ "尝试对数据库做初始化操作" ]
wangwenpei/fantasy
python
https://github.com/wangwenpei/fantasy/blob/0fe92059bd868f14da84235beb05b217b1d46e4a/fantasy/__init__.py#L50-L61
[ "def", "smart_database", "(", "app", ")", ":", "from", "sqlalchemy", ".", "engine", ".", "url", "import", "make_url", "from", "sqlalchemy_utils", "import", "database_exists", ",", "create_database", "# 如果数据库不存在,则尝试创建数据", "dsn", "=", "make_url", "(", "app", ".", "config", "[", "'SQLALCHEMY_DATABASE_URI'", "]", ")", "if", "not", "database_exists", "(", "dsn", ")", ":", "create_database", "(", "dsn", ")", "pass", "pass" ]
0fe92059bd868f14da84235beb05b217b1d46e4a
test
smart_migrate
如果存在migration且指定为primary_node则执行migrate操作
fantasy/__init__.py
def smart_migrate(app, migrations_root): """如果存在migration且指定为primary_node则执行migrate操作""" db = app.db if os.path.exists(migrations_root) and \ os.environ['FANTASY_PRIMARY_NODE'] != 'no': from flask_migrate import (Migrate, upgrade as migrate_upgrade) migrate = Migrate(app, db, directory=migrations_root) migrate.init_app(app, db) migrate_upgrade(migrations_root) pass pass
def smart_migrate(app, migrations_root): """如果存在migration且指定为primary_node则执行migrate操作""" db = app.db if os.path.exists(migrations_root) and \ os.environ['FANTASY_PRIMARY_NODE'] != 'no': from flask_migrate import (Migrate, upgrade as migrate_upgrade) migrate = Migrate(app, db, directory=migrations_root) migrate.init_app(app, db) migrate_upgrade(migrations_root) pass pass
[ "如果存在migration且指定为primary_node则执行migrate操作" ]
wangwenpei/fantasy
python
https://github.com/wangwenpei/fantasy/blob/0fe92059bd868f14da84235beb05b217b1d46e4a/fantasy/__init__.py#L64-L77
[ "def", "smart_migrate", "(", "app", ",", "migrations_root", ")", ":", "db", "=", "app", ".", "db", "if", "os", ".", "path", ".", "exists", "(", "migrations_root", ")", "and", "os", ".", "environ", "[", "'FANTASY_PRIMARY_NODE'", "]", "!=", "'no'", ":", "from", "flask_migrate", "import", "(", "Migrate", ",", "upgrade", "as", "migrate_upgrade", ")", "migrate", "=", "Migrate", "(", "app", ",", "db", ",", "directory", "=", "migrations_root", ")", "migrate", ".", "init_app", "(", "app", ",", "db", ")", "migrate_upgrade", "(", "migrations_root", ")", "pass", "pass" ]
0fe92059bd868f14da84235beb05b217b1d46e4a
test
smart_account
尝试使用内置方式构建账户
fantasy/__init__.py
def smart_account(app): """尝试使用内置方式构建账户""" if os.environ['FANTASY_ACTIVE_ACCOUNT'] == 'no': return from flask_security import SQLAlchemyUserDatastore, Security account_module_name, account_class_name = os.environ[ 'FANTASY_ACCOUNT_MODEL'].rsplit('.', 1) account_module = importlib.import_module(account_module_name) account_class = getattr(account_module, account_class_name) role_module_name, role_class_name = os.environ[ 'FANTASY_ROLE_MODEL'].rsplit('.', 1) role_module = importlib.import_module(role_module_name) role_class = getattr(role_module, role_class_name) r = True if os.environ[ 'FANTASY_ACCOUNT_SECURITY_MODE'] != 'no' else False Security(app, SQLAlchemyUserDatastore( app.db, account_class, role_class), register_blueprint=r) pass
def smart_account(app): """尝试使用内置方式构建账户""" if os.environ['FANTASY_ACTIVE_ACCOUNT'] == 'no': return from flask_security import SQLAlchemyUserDatastore, Security account_module_name, account_class_name = os.environ[ 'FANTASY_ACCOUNT_MODEL'].rsplit('.', 1) account_module = importlib.import_module(account_module_name) account_class = getattr(account_module, account_class_name) role_module_name, role_class_name = os.environ[ 'FANTASY_ROLE_MODEL'].rsplit('.', 1) role_module = importlib.import_module(role_module_name) role_class = getattr(role_module, role_class_name) r = True if os.environ[ 'FANTASY_ACCOUNT_SECURITY_MODE'] != 'no' else False Security(app, SQLAlchemyUserDatastore( app.db, account_class, role_class), register_blueprint=r) pass
[ "尝试使用内置方式构建账户" ]
wangwenpei/fantasy
python
https://github.com/wangwenpei/fantasy/blob/0fe92059bd868f14da84235beb05b217b1d46e4a/fantasy/__init__.py#L80-L105
[ "def", "smart_account", "(", "app", ")", ":", "if", "os", ".", "environ", "[", "'FANTASY_ACTIVE_ACCOUNT'", "]", "==", "'no'", ":", "return", "from", "flask_security", "import", "SQLAlchemyUserDatastore", ",", "Security", "account_module_name", ",", "account_class_name", "=", "os", ".", "environ", "[", "'FANTASY_ACCOUNT_MODEL'", "]", ".", "rsplit", "(", "'.'", ",", "1", ")", "account_module", "=", "importlib", ".", "import_module", "(", "account_module_name", ")", "account_class", "=", "getattr", "(", "account_module", ",", "account_class_name", ")", "role_module_name", ",", "role_class_name", "=", "os", ".", "environ", "[", "'FANTASY_ROLE_MODEL'", "]", ".", "rsplit", "(", "'.'", ",", "1", ")", "role_module", "=", "importlib", ".", "import_module", "(", "role_module_name", ")", "role_class", "=", "getattr", "(", "role_module", ",", "role_class_name", ")", "r", "=", "True", "if", "os", ".", "environ", "[", "'FANTASY_ACCOUNT_SECURITY_MODE'", "]", "!=", "'no'", "else", "False", "Security", "(", "app", ",", "SQLAlchemyUserDatastore", "(", "app", ".", "db", ",", "account_class", ",", "role_class", ")", ",", "register_blueprint", "=", "r", ")", "pass" ]
0fe92059bd868f14da84235beb05b217b1d46e4a
test
load_tasks
装载任务,解决celery无法自动装载的问题
fantasy/__init__.py
def load_tasks(app, entry_file=None): """装载任务,解决celery无法自动装载的问题""" from celery import Task tasks_txt = os.path.join(os.path.dirname(entry_file), 'migrations', 'tasks.txt') if not os.path.exists(tasks_txt): import sys print('Tasks file not found:%s' % tasks_txt) sys.exit(-1) class ContextTask(Task): abstract = True def __call__(self, *args, **kwargs): with app.app_context(): return super().__call__(*args, **kwargs) app.celery.config_from_object(app.config, namespace='CELERY') app.celery.Task = ContextTask with app.app_context(): with open(tasks_txt, 'r') as f: for line in f: mod = line.strip('\n') if mod: importlib.import_module(mod + '.tasks') pass pass pass pass
def load_tasks(app, entry_file=None): """装载任务,解决celery无法自动装载的问题""" from celery import Task tasks_txt = os.path.join(os.path.dirname(entry_file), 'migrations', 'tasks.txt') if not os.path.exists(tasks_txt): import sys print('Tasks file not found:%s' % tasks_txt) sys.exit(-1) class ContextTask(Task): abstract = True def __call__(self, *args, **kwargs): with app.app_context(): return super().__call__(*args, **kwargs) app.celery.config_from_object(app.config, namespace='CELERY') app.celery.Task = ContextTask with app.app_context(): with open(tasks_txt, 'r') as f: for line in f: mod = line.strip('\n') if mod: importlib.import_module(mod + '.tasks') pass pass pass pass
[ "装载任务,解决celery无法自动装载的问题" ]
wangwenpei/fantasy
python
https://github.com/wangwenpei/fantasy/blob/0fe92059bd868f14da84235beb05b217b1d46e4a/fantasy/__init__.py#L141-L171
[ "def", "load_tasks", "(", "app", ",", "entry_file", "=", "None", ")", ":", "from", "celery", "import", "Task", "tasks_txt", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "dirname", "(", "entry_file", ")", ",", "'migrations'", ",", "'tasks.txt'", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "tasks_txt", ")", ":", "import", "sys", "print", "(", "'Tasks file not found:%s'", "%", "tasks_txt", ")", "sys", ".", "exit", "(", "-", "1", ")", "class", "ContextTask", "(", "Task", ")", ":", "abstract", "=", "True", "def", "__call__", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "with", "app", ".", "app_context", "(", ")", ":", "return", "super", "(", ")", ".", "__call__", "(", "*", "args", ",", "*", "*", "kwargs", ")", "app", ".", "celery", ".", "config_from_object", "(", "app", ".", "config", ",", "namespace", "=", "'CELERY'", ")", "app", ".", "celery", ".", "Task", "=", "ContextTask", "with", "app", ".", "app_context", "(", ")", ":", "with", "open", "(", "tasks_txt", ",", "'r'", ")", "as", "f", ":", "for", "line", "in", "f", ":", "mod", "=", "line", ".", "strip", "(", "'\\n'", ")", "if", "mod", ":", "importlib", ".", "import_module", "(", "mod", "+", "'.tasks'", ")", "pass", "pass", "pass", "pass" ]
0fe92059bd868f14da84235beb05b217b1d46e4a