--- task_categories: - text-retrieval task_ids: - document-retrieval config_names: - corpus tags: - text-retrieval dataset_info: - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: float64 - config_name: corpus features: - name: id dtype: string - name: text dtype: string - config_name: queries features: - name: id dtype: string - name: text dtype: string configs: - config_name: default data_files: - split: test path: relevance.jsonl - config_name: corpus data_files: - split: corpus path: corpus.jsonl - config_name: queries data_files: - split: queries path: queries.jsonl --- APPS is a benchmark for code generation with 10000 problems. It can be used to evaluate the ability of language models to generate code from natural language specifications. To create the APPS dataset, the authors manually curated problems from open-access sites where programmers share problems with each other, including Codewars, AtCoder, Kattis, and Codeforces. **Usage** ``` import datasets # Download the dataset queries = datasets.load_dataset("embedding-benchmark/APPS", "queries") documents = datasets.load_dataset("embedding-benchmark/APPS", "corpus") pair_labels = datasets.load_dataset("embedding-benchmark/APPS", "default") ```