array commited on
Commit
77d83da
·
1 Parent(s): 641d807

Add comprehensive README with paper info, loading code, and circular eval instructions

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md CHANGED
@@ -38,3 +38,63 @@ configs:
38
  - split: test
39
  path: data/test-*
40
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  - split: test
39
  path: data/test-*
40
  ---
41
+
42
+ # SAT-v2 Dataset
43
+
44
+ ## Paper
45
+
46
+ **SAT: Dynamic Spatial Aptitude Training for Multimodal Language Models**
47
+
48
+ This dataset is part of the SAT (Spatial Aptitude Training) project, which introduces a dynamic benchmark for evaluating and improving spatial reasoning capabilities in multimodal language models.
49
+
50
+ - **Project Page**: [https://arijitray.com/SAT/](https://arijitray.com/SAT/)
51
+ - **Paper**: [arXiv:2412.07755](https://arxiv.org/abs/2412.07755)
52
+
53
+ ## Dataset Description
54
+
55
+ SAT-v2 is a comprehensive spatial reasoning benchmark containing over 300,000 questions across multiple splits. The dataset tests various aspects of spatial understanding including perspective-taking, object relationships, and dynamic scene understanding.
56
+
57
+ ## Loading the Dataset
58
+
59
+ ```python
60
+ from datasets import load_dataset
61
+
62
+ # Load the training split
63
+ dataset = load_dataset("array/SAT-v2", split="train")
64
+
65
+ # Or load a specific split
66
+ val_dataset = load_dataset("array/SAT-v2", split="val")
67
+ static_dataset = load_dataset("array/SAT-v2", split="static")
68
+ test_dataset = load_dataset("array/SAT-v2", split="test")
69
+
70
+ # Access a sample
71
+ sample = dataset[0]
72
+ print(sample["question"])
73
+ print(sample["answers"])
74
+ print(sample["correct_answer"])
75
+ ```
76
+
77
+ ## Dataset Splits
78
+
79
+ - **train**: 172,384 examples - Dynamic training questions
80
+ - **static**: 127,405 examples - Static spatial reasoning questions
81
+ - **val**: 4,001 examples - Validation set
82
+ - **test**: 150 examples - Test set
83
+
84
+ **Important Note on Test Set Evaluation:** When evaluating on the test set, please use circular evaluation by switching the position of the correct answer to avoid position bias. If you're using lmms-eval, refer to the implementation here: [https://github.com/arijitray1993/lmms-eval/tree/main/lmms_eval/tasks/sat_real](https://github.com/arijitray1993/lmms-eval/tree/main/lmms_eval/tasks/sat_real)
85
+
86
+ ## Citation
87
+
88
+ If you use this dataset, please cite:
89
+
90
+ ```bibtex
91
+ @misc{ray2025satdynamicspatialaptitude,
92
+ title={SAT: Dynamic Spatial Aptitude Training for Multimodal Language Models},
93
+ author={Arijit Ray and Jiafei Duan and Ellis Brown and Reuben Tan and Dina Bashkirova and Rose Hendrix and Kiana Ehsani and Aniruddha Kembhavi and Bryan A. Plummer and Ranjay Krishna and Kuo-Hao Zeng and Kate Saenko},
94
+ year={2025},
95
+ eprint={2412.07755},
96
+ archivePrefix={arXiv},
97
+ primaryClass={cs.CV},
98
+ url={https://arxiv.org/abs/2412.07755},
99
+ }
100
+ ```