import os import json import pickle import random import numpy as np import pandas as pd from collections import defaultdict import torch import torchvision from torch.utils.data import DataLoader, Dataset, Sampler from video_reader import PyVideoReader from diffusers.utils import export_to_video from diffusers.training_utils import free_memory # 5: (21, 41, 61, 81, 101) # 6: (25, 49, 73, 97, 121) # 7: (29, 57, 85, 113, 141) # 8: (33, 65, 97, 129, 161) # 9: (37, 73, 109, 145, 181) # 10: (41, 81, 121, 161, 201) # 11: (45, 89, 133, 177, 221) # 12: (49, 97, 145, 193, 241) # 1: (21 - 1) * 4 + 1 = 81, 162 # 2: (22 - 1) * 4 + 1 = 85, 170 # 3: (23 - 1) * 4 + 1 = 89, 178 # 4: (24 - 1) * 4 + 1 = 93, 186 # 5: (25 - 1) * 4 + 1 = 97, 194 # 6: (26 - 1) * 4 + 1 = 101, 202 # 7: (27 - 1) * 4 + 1 = 105, 210 # 8: (28 - 1) * 4 + 1 = 109, 218 # 9: (29 - 1) * 4 + 1 = 113, 226 # 10: (30 - 1) * 4 + 1 = 117, 234 # 11: (31 - 1) * 4 + 1 = 121, 242 # 12: (32 - 1) * 4 + 1 = 125, 250 # 13: (33 - 1) * 4 + 1 = 129, 258 # 14: (34 - 1) * 4 + 1 = 133, 266 # 15: (35 - 1) * 4 + 1 = 137, 274 # 16: (36 - 1) * 4 + 1 = 141, 282 resolution_bucket_options = { 640: [ (768, 320), (768, 384), (640, 384), (768, 512), (576, 448), (512, 512), (448, 576), (512, 768), (384, 640), (384, 768), (320, 768), ], } length_bucket_options = { 1: [321, 301, 281, 261, 241, 221, 193, 181, 161, 141, 121, 101, 81, 61, 41, 21], 2: [193, 177, 161, 156, 145, 133, 129, 121, 113, 109, 97, 85, 81, 73, 65, 61, 49, 37, 25], } def find_nearest_resolution_bucket(h, w, resolution=640): min_metric = float('inf') best_bucket = None for (bucket_h, bucket_w) in resolution_bucket_options[resolution]: metric = abs(h * bucket_w - w * bucket_h) if metric <= min_metric: min_metric = metric best_bucket = (bucket_h, bucket_w) return best_bucket def find_nearest_length_bucket(length, stride=1): buckets = length_bucket_options[stride] min_bucket = min(buckets) if length < min_bucket: return length valid_buckets = [bucket for bucket in buckets if bucket <= length] return max(valid_buckets) def read_cut_crop_and_resize(video_path, f_prime, h_prime, w_prime, stride=1, start_frame=None, end_frame=None): vr = PyVideoReader(video_path, threads=0) # 0 means auto (let ffmpeg pick the optimal number) total_frames = len(vr) # if stride != 1: # required_span = stride * (f_prime - 1) # start_frame = max(0, total_frames - required_span - 1) # else: # start_frame = max(0, total_frames - f_prime) frame_indices = list(range(start_frame, end_frame, stride)) assert len(frame_indices) == f_prime frames = torch.from_numpy(vr.get_batch(frame_indices)).float() # if stride != 1: # required_span = stride * (f_prime - 1) # start_frame = max(0, total_frames - required_span - 1) # frame_indices = list(range(start_frame, total_frames, stride)) # assert len(frame_indices) == f_prime # frames = torch.from_numpy(np.stack(vr.decode_fast(start_frame=0, end_frame=total_frames))).float() # frames = frames[frame_indices] # else: # start_frame = max(0, total_frames - f_prime) # frames = torch.from_numpy(np.stack(vr.decode_fast(start_frame=start_frame, end_frame=total_frames))).float() # total_frames = len(vr) # start_frame = max(0, total_frames - f_prime) # # frame_indices = list(range(start_frame, total_frames)) # # frames = torch.from_numpy(vr.get_batch(frame_indices)).float() # frames = torch.from_numpy(np.stack(vr.decode_fast(start_frame=start_frame, end_frame=total_frames))).float() frames = (frames / 127.5) - 1 video = frames.permute(0, 3, 1, 2) frames, channels, h, w = video.shape aspect_ratio_original = h / w aspect_ratio_target = h_prime / w_prime if aspect_ratio_original >= aspect_ratio_target: new_h = int(w * aspect_ratio_target) top = (h - new_h) // 2 bottom = top + new_h left = 0 right = w else: new_w = int(h / aspect_ratio_target) left = (w - new_w) // 2 right = left + new_w top = 0 bottom = h # Crop the video cropped_video = video[:, :, top:bottom, left:right] # Resize the cropped video resized_video = torchvision.transforms.functional.resize(cropped_video, (h_prime, w_prime)) return resized_video def save_frames(frame_raw, fps=24, video_path="1.mp4"): save_list = [] for frame in frame_raw: frame = (frame + 1) / 2 * 255 frame = torchvision.transforms.transforms.ToPILImage()(frame.to(torch.uint8)).convert("RGB") save_list.append(frame) frame = None del frame export_to_video(save_list, video_path, fps=fps) save_list = None del save_list free_memory() class BucketedFeatureDataset(Dataset): def __init__(self, csv_file, video_folder, stride=1, cache_file=None, force_rebuild=False): self.csv_file = csv_file self.video_folder = video_folder self.stride = stride if cache_file is None: cache_file = os.path.join(video_folder, f"dataset_cache_stride{stride}.pkl") if force_rebuild or not os.path.exists(cache_file): print("Building metadata cache...") self._build_metadata() self._save_cache(cache_file) else: print("Loading cached metadata...") with open(cache_file, "rb") as f: cached_data = pickle.load(f) if cached_data.get("stride", 1) != stride: print(f"Stride mismatch in cache (cached: {cached_data.get('stride', 1)}, current: {stride}). Rebuilding...") self._build_metadata() self._save_cache(cache_file) else: self.samples = cached_data["samples"] self.buckets = cached_data["buckets"] print(f"Loaded {len(self.samples)} samples from cache") def _save_cache(self, cache_file): print("Saving metadata cache...") cached_data = { "samples": self.samples, "buckets": self.buckets, "stride": self.stride } with open(cache_file, "wb") as f: pickle.dump(cached_data, f) print(f"Cached {len(self.samples)} samples with stride={self.stride}") # def _build_metadata(self): # self.feature_files = [f for f in os.listdir(self.video_folder) if f.endswith(".mp4")] # self.samples = [] # self.buckets = defaultdict(list) # sample_idx = 0 # print(f"Processing {len(self.feature_files)} files...") # for i, feature_file in enumerate(self.feature_files): # if i % 10000 == 0: # print(f"Processed {i}/{len(self.feature_files)} files") # video_path = os.path.join(self.video_folder, feature_file) # # Parse filename # parts = feature_file.split("_")[:4] # uttid = parts[0] # num_frame = int(parts[1]) # height = int(parts[2]) # width = int(parts[3].replace(".mp4", "")) def _build_metadata(self): self.df = pd.read_csv(self.csv_file) self.samples = [] self.buckets = defaultdict(list) sample_idx = 0 print(f"Processing {len(self.df)} records from CSV with stride={self.stride}...") for i, row in self.df.iterrows(): if i % 10000 == 0: print(f"Processed {i}/{len(self.df)} records") uttid = row['id'] video_file = row['video path'] video_path = os.path.join(self.video_folder, video_file) start_frame = row["start_frame"] end_frame = row["end_frame"] segment_id = row["segment_id"] num_frame = end_frame - start_frame # resolution = row["resolution"] # width, height = map(int, row["resolution"].split('x')) width = row["new_width"] height = row["new_height"] fps = row["new_fps"] uttid = f"{uttid}_{start_frame}_{end_frame}" prompt = row["prompt"] # prompt_path = os.path.join(self.video_folder, row["annotation path"], "caption.json") # with open(prompt_path, 'r') as f: # data = json.load(f) # prompt = data['SceneDescription'] + " " + data["CameraMotion"] # # keep length >= 121 # if num_frame < 121: # continue effective_num_frame = (num_frame + self.stride - 1) // self.stride bucket_height, bucket_width = find_nearest_resolution_bucket(height, width, resolution=640) bucket_num_frame = find_nearest_length_bucket(effective_num_frame, stride=self.stride) bucket_key = (bucket_num_frame, bucket_height, bucket_width) sample_info = { "uttid": uttid, "bucket_key": bucket_key, "video_path": video_path, "prompt": prompt, "fps": fps, "stride": self.stride, "effective_num_frame": effective_num_frame, "num_frame": num_frame, "height": height, "width": width, "bucket_num_frame": bucket_num_frame, "bucket_height": bucket_height, "bucket_width": bucket_width, "start_frame": start_frame, "end_frame": end_frame, } self.samples.append(sample_info) self.buckets[bucket_key].append(sample_idx) sample_idx += 1 def __len__(self): return len(self.samples) def __getitem__(self, idx): # sample_info = self.samples[idx] # video_data = read_cut_crop_and_resize( # video_path=sample_info["video_path"], # f_prime=sample_info["bucket_num_frame"], # h_prime=sample_info["bucket_height"], # w_prime=sample_info["bucket_width"], # stride=self.stride, # ) while True: sample_info = self.samples[idx] try: video_data = read_cut_crop_and_resize( video_path=sample_info["video_path"], f_prime=sample_info["bucket_num_frame"], h_prime=sample_info["bucket_height"], w_prime=sample_info["bucket_width"], stride=self.stride, start_frame=sample_info["start_frame"], end_frame=sample_info["end_frame"], ) break except Exception: idx = random.randint(0, len(self.samples) - 1) print(f"Error loading {sample_info['video_path']}, retrying...") return { "uttid": sample_info["uttid"], "bucket_key": sample_info["bucket_key"], "video_metadata": { "num_frames": sample_info["bucket_num_frame"], "height": sample_info["bucket_height"], "width": sample_info["bucket_width"], "fps": sample_info["fps"], "stride": self.stride, "effective_num_frame": sample_info["effective_num_frame"], }, "videos": video_data, "prompts": sample_info["prompt"], "first_frames_images": (video_data[0] + 1) / 2 * 255, } class BucketedSampler(Sampler): def __init__(self, dataset, batch_size, drop_last=False, shuffle=False, seed=42): self.dataset = dataset self.batch_size = batch_size self.drop_last = drop_last self.shuffle = shuffle self.seed = seed self.generator = torch.Generator() self.buckets = dataset.buckets self._epoch = 0 def set_epoch(self, epoch): self._epoch = epoch def __iter__(self): if self.shuffle: self.generator.manual_seed(self.seed + self._epoch) else: self.generator.manual_seed(self.seed) bucket_iterators = {} bucket_batches = {} for bucket_key, sample_indices in self.buckets.items(): indices = sample_indices.copy() if self.shuffle: indices = torch.randperm(len(indices), generator=self.generator).tolist() indices = [sample_indices[i] for i in indices] batches = [] for i in range(0, len(indices), self.batch_size): batch = indices[i : i + self.batch_size] if len(batch) == self.batch_size or not self.drop_last: batches.append(batch) if batches: bucket_batches[bucket_key] = batches bucket_iterators[bucket_key] = iter(batches) remaining_buckets = list(bucket_iterators.keys()) while remaining_buckets: idx = torch.randint(len(remaining_buckets), (1,), generator=self.generator).item() bucket_key = remaining_buckets[idx] bucket_iter = bucket_iterators[bucket_key] try: batch = next(bucket_iter) for sample_idx in batch: sample_bucket = self.dataset.samples[sample_idx]['bucket_key'] if sample_bucket != bucket_key: print(f"❌ BUCKET MISMATCH! Expected {bucket_key}, got {sample_bucket} for sample {sample_idx}") yield batch except StopIteration: remaining_buckets.remove(bucket_key) def __len__(self): total_batches = 0 for sample_indices in self.buckets.values(): num_batches = len(sample_indices) // self.batch_size if not self.drop_last and len(sample_indices) % self.batch_size != 0: num_batches += 1 total_batches += num_batches return total_batches def collate_fn(batch): def collate_dict(data_list): if isinstance(data_list[0], dict): return { key: collate_dict([d[key] for d in data_list]) for key in data_list[0] } elif isinstance(data_list[0], torch.Tensor): return torch.stack(data_list) else: return data_list return { key: collate_dict([d[key] for d in batch]) for key in batch[0] } if __name__ == "__main__": from accelerate import Accelerator csv_file = f"/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ-Final/test_prompt_filtered" video_folder = f"/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ-Final" stride = 1 batch_size = 64 num_train_epochs = 1 seed = 0 output_dir = "accelerate_checkpoints" checkpoint_dirs = ( [ d for d in os.listdir(output_dir) if d.startswith("checkpoint-") and os.path.isdir(os.path.join(output_dir, d)) ] if os.path.exists(output_dir) else [] ) dataset = BucketedFeatureDataset(csv_file=csv_file, video_folder=video_folder, stride=stride) sampler = BucketedSampler(dataset, batch_size=batch_size, drop_last=True, shuffle=False, seed=seed) dataloader = DataLoader(dataset, batch_sampler=sampler, collate_fn=collate_fn, num_workers=8) print(len(dataset), len(dataloader)) accelerator = Accelerator() dataloader = accelerator.prepare(dataloader) print(f"Dataset size: {len(dataset)}, Dataloader batches: {len(dataloader)}") print(f"Process index: {accelerator.process_index}, World size: {accelerator.num_processes}") step = 0 global_step = 0 first_epoch = 0 num_update_steps_per_epoch = len(dataloader) print("Testing dataloader...") step = global_step for epoch in range(first_epoch, num_train_epochs): sampler.set_epoch(epoch) skip_steps = 0 printed_skip_log = False for i, batch in enumerate(dataloader): if epoch == first_epoch and skip_steps < (global_step % num_update_steps_per_epoch): skip_steps += 1 continue if epoch == first_epoch and not printed_skip_log: print(f"Skip {skip_steps} steps in epoch {epoch}") printed_skip_log = True # Get metadata uttid = batch["uttid"] bucket_key = batch["bucket_key"] num_frame = batch["video_metadata"]["num_frames"] height = batch["video_metadata"]["height"] width = batch["video_metadata"]["width"] # Get feature video_data = batch["videos"] prompt = batch["prompts"] first_frames_images = batch["first_frames_images"] first_frames_images = [torchvision.transforms.ToPILImage()(x.to(torch.uint8)) for x in first_frames_images] # import pdb;pdb.set_trace() # save_frames(video_data[0].squeeze(0), video_path="1.mp4") if accelerator.process_index == 0: # print info print(f" Step {step}:") print(f" Batch {i}:") print(f" Batch size: {len(uttid)}") print(f" Uttids: {uttid}") print(f" Dimensions - frames: {num_frame[0]}, height: {height[0]}, width: {width[0]}") print(f" Bucket key: {bucket_key[0]}") print(f" Videos shape: {video_data.shape}") print(f" Cpation: {prompt}") # verify assert all(nf == num_frame[0] for nf in num_frame), "Frame numbers not consistent in batch" assert all(h == height[0] for h in height), "Heights not consistent in batch" assert all(w == width[0] for w in width), "Widths not consistent in batch" print(" ✓ Batch dimensions are consistent") step += 1