import math import html import ftfy import regex as re import random from typing import Any, Dict, List, Optional, Tuple, Union import argparse import os from tqdm import tqdm from diffusers import AutoencoderKLWan from transformers import ( AutoTokenizer, CLIPImageProcessor, CLIPVisionModel, UMT5EncoderModel, SiglipImageProcessor, SiglipVisionModel ) from diffusers.video_processor import VideoProcessor from diffusers.utils import export_to_video, load_image from dataset_tool import CollectionDataset, collate_fn_map from omegaconf import OmegaConf from torch.utils.data import DataLoader import torch import torch.distributed as dist import torch.nn as nn from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data.distributed import DistributedSampler from torch.utils.data import Subset import torchvision.transforms as transforms import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from IPython.display import HTML, display from IPython.display import clear_output # 用于清理历史输出 from accelerate import Accelerator, DistributedType from accelerate.logging import get_logger from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed from diffusers.training_utils import free_memory from utils_framepack import encode_image def encode_image_1( image_processor, image_encoder, image, device: Optional[torch.device] = "cuda", ): device = device image = image_processor(images=image, return_tensors="pt").to(device) image_embeds = image_encoder(**image, output_hidden_states=True) return image_embeds.hidden_states[-2] def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r"\s+", " ", text) text = text.strip() return text def prompt_clean(text): text = whitespace_clean(basic_clean(text)) return text def _get_t5_prompt_embeds( tokenizer, text_encoder, prompt: Union[str, List[str]] = None, num_videos_per_prompt: int = 1, max_sequence_length: int = 512, caption_dropout_p: float = 0.0, device: Optional[torch.device] = "cuda", dtype: Optional[torch.dtype] = torch.bfloat16, ): device = device dtype = dtype prompt = [prompt] if isinstance(prompt, str) else prompt prompt = [prompt_clean(u) for u in prompt] batch_size = len(prompt) text_inputs = tokenizer( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_attention_mask=True, return_tensors="pt", ) text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask prompt_embeds = text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) if random.random() < caption_dropout_p: prompt_embeds.fill_(0) mask.fill_(False) seq_lens = mask.gt(0).sum(dim=1).long() prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)] prompt_embeds = torch.stack([ torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds ], dim=0) # duplicate text embeddings for each generation per prompt, using mps friendly method _, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) return prompt_embeds # Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline.encode_prompt def encode_prompt( tokenizer, text_encoder, prompt: Union[str, List[str]], num_videos_per_prompt: int = 1, prompt_embeds: Optional[torch.Tensor] = None, max_sequence_length: int = 512, caption_dropout_p: float = 0.0, device: Optional[torch.device] = "cuda", dtype: Optional[torch.dtype] = torch.bfloat16, ): device = device prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_embeds = _get_t5_prompt_embeds( tokenizer, text_encoder, prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, caption_dropout_p=caption_dropout_p, device=device, dtype=dtype, ) return prompt_embeds def setup_distributed_env(): dist.init_process_group(backend="nccl") torch.cuda.set_device(int(os.environ["LOCAL_RANK"])) def cleanup_distributed_env(): dist.destroy_process_group() def main(rank, world_size, global_rank, batch_size, dataloader_num_workers, config_path, output_latent_folder, pretrained_model_name_or_path, siglip_model_name_or_path): weight_dtype = torch.bfloat16 # batch_size = 2 # dataloader_num_workers = 8 # config_path = "512_collection_config_vae1011_aligned_full_dump.yaml" # output_latent_folder = "/mnt/bn/yufan-dev-my/ysh/Datasets/fp_offload_latents" # pretrained_model_name_or_path = "/mnt/bn/yufan-dev-my/ysh/Ckpts/hunyuanvideo-community/HunyuanVideo" # siglip_model_name_or_path = "/mnt/bn/yufan-dev-my/ysh/Ckpts/lllyasviel/flux_redux_bfl" os.makedirs(output_latent_folder, exist_ok=True) device = rank # load tokenizers tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", ) clip_image_processor = CLIPImageProcessor.from_pretrained( args.pretrained_model_name_or_path, subfolder="image_processor", ) feature_extractor = SiglipImageProcessor.from_pretrained( siglip_model_name_or_path, subfolder="feature_extractor", ) # load encoders text_encoder = UMT5EncoderModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.float16, ) clip_image_encoder = CLIPVisionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="image_encoder", torch_dtype=torch.float16, ) image_encoder = SiglipVisionModel.from_pretrained( siglip_model_name_or_path, subfolder="image_encoder", torch_dtype=weight_dtype, ) vae = AutoencoderKLWan.from_pretrained( pretrained_model_name_or_path, subfolder="vae", torch_dtype=torch.float32, ) vae_scale_factor_spatial = vae.spatial_compression_ratio video_processor = VideoProcessor(vae_scale_factor=vae_scale_factor_spatial) vae.requires_grad_(False) text_encoder.requires_grad_(False) clip_image_encoder.requires_grad_(False) image_encoder.requires_grad_(False) vae.eval() text_encoder.eval() clip_image_encoder.eval() image_encoder.eval() vae = vae.to(device) text_encoder = text_encoder.to(device) image_encoder = image_encoder.to(device) clip_image_encoder = clip_image_encoder.to(device) dist.barrier() configs = OmegaConf.load(config_path) dataset = CollectionDataset.create_dataset_function(configs['train_data'], configs['train_data_weights'], **configs['data']['params']) print(len(dataset)) if global_rank == 0: pbar = tqdm(total=len(dataset) // world_size, desc="Processing") dist.barrier() # dataloader = DataLoader( # dataset, # shuffle=False, # batch_size=batch_size, # collate_fn=collate_fn_map, # num_workers=dataloader_num_workers, # pin_memory=True, # prefetch_factor=2 if dataloader_num_workers != 0 else None, # persistent_workers=True if dataloader_num_workers != 0 else False, # ) # def distributed_iterate_dataloader(dataloader, world_size, rank): # sample_count = 0 # for idx, batch in enumerate(dataloader): # if sample_count % world_size == rank: # # No need to call collate_fn_map again as it's already done by DataLoader # yield batch # Yield the batch directly # sample_count += 1 # for idx, batch in enumerate(distributed_iterate_dataloader(dataloader, dist.get_world_size(), dist.get_rank())): def distributed_iterate_dataset(dataset, world_size, rank): iterator = iter(dataset) sample_count = 0 while True: try: batch = next(iterator) if sample_count % world_size == rank: processed_batch = collate_fn_map(batch) yield processed_batch sample_count += 1 except StopIteration: break for idx, batch in enumerate(distributed_iterate_dataset(dataset, dist.get_world_size(), dist.get_rank())): valid_indices = [] valid_uttids = [] valid_num_frames = [] valid_heights = [] valid_widths = [] valid_videos = [] valid_prompts = [] valid_first_frames_images = [] for i, (uttid, num_frame, height, width) in enumerate(zip(batch["uttid"], batch["video_metadata"]["num_frames"], batch["video_metadata"]["height"], batch["video_metadata"]["width"])): output_path = os.path.join(output_latent_folder, f"{uttid}_{num_frame}_{height}_{width}.pt") if not os.path.exists(output_path): valid_indices.append(i) valid_uttids.append(uttid) valid_num_frames.append(num_frame) valid_heights.append(height) valid_widths.append(width) valid_videos.append(batch["videos"][i]) valid_prompts.append(batch["prompts"][i]) valid_first_frames_images.append(batch["first_frames_images"][i]) else: print(f"skipping {uttid}") if not valid_indices: print("skipping entire batch!") continue batch = { "uttid": valid_uttids, "video_metadata": { "num_frames": valid_num_frames, "height": valid_heights, "width": valid_widths }, "videos": torch.stack(valid_videos), "prompts": valid_prompts, "first_frames_images": torch.stack(valid_first_frames_images) } if len(batch["uttid"]) == 0: print("All samples in this batch are already processed, skipping!") continue with torch.no_grad(): # Get Vae feature latents_mean = torch.tensor( vae.config.latents_mean).view( 1, vae.config.z_dim, 1, 1, 1).to(vae.device, vae.dtype) latents_std = 1.0 / torch.tensor( vae.config.latents_std).view( 1, vae.config.z_dim, 1, 1, 1).to( vae.device, vae.dtype) pixel_values = batch["videos"].permute(0, 2, 1, 3, 4).to(dtype=vae.dtype, device=device) vae_latents = vae.encode(pixel_values).latent_dist.sample() vae_latents = (vae_latents - latents_mean) * latents_std # Encode prompts prompts = batch["prompts"] prompt_embeds = encode_prompt( tokenizer=tokenizer, text_encoder=text_encoder, prompt=prompts, device=device, ) # Prepare images image_tensor = batch["first_frames_images"] images = [transforms.ToPILImage()(x.to(torch.uint8)) for x in image_tensor] clip_image_embeds = encode_image_1( image_processor=clip_image_processor, image_encoder=clip_image_encoder, image=images, device=device ) image = video_processor.preprocess(image=images, height=batch["videos"].shape[-2], width=batch["videos"].shape[-1]) image_embeds = encode_image( feature_extractor, image_encoder, image, device=device, dtype=weight_dtype, ) for uttid, num_frame, height, width, cur_vae_latent, cur_prompt_embed, cur_clip_image_embed, cur_image_embed in zip(batch["uttid"], batch["video_metadata"]["num_frames"], batch["video_metadata"]["height"], batch["video_metadata"]["width"], vae_latents, prompt_embeds, clip_image_embeds, image_embeds): output_path = os.path.join(output_latent_folder, f"{uttid}_{num_frame}_{height}_{width}.pt") torch.save( { "vae_latent": cur_vae_latent.cpu().detach(), "prompt_embed": cur_prompt_embed.cpu().detach(), "clip_image_embeds": cur_clip_image_embed.cpu().detach(), "image_embeds": cur_image_embed.cpu().detach(), }, output_path ) print(f"save to: {output_path}") if global_rank == 0: pbar.update(1) pbar.set_postfix({"batch": idx}) free_memory() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Script for running model training and data processing.") parser.add_argument("--batch_size", type=int, default=1, help="Batch size for processing") parser.add_argument("--dataloader_num_workers", type=int, default=8, help="Number of workers for data loading") parser.add_argument("--config_path", type=str, default="part1.yaml", help="Path to the config file") parser.add_argument("--output_latent_folder", type=str, default="/mnt/bn/yufan-dev-my/ysh/Datasets/fp_offload_latents_wan", help="Folder to store output latents") parser.add_argument("--pretrained_model_name_or_path", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/Wan-AI/Wan2.1-I2V-14B-720P-Diffusers/", help="Pretrained model path") parser.add_argument("--siglip_model_name_or_path", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/lllyasviel/flux_redux_bfl", help="Siglip model path") args = parser.parse_args() setup_distributed_env() global_rank = dist.get_rank() local_rank = int(os.environ["LOCAL_RANK"]) device = torch.cuda.current_device() world_size = dist.get_world_size() main( world_size=world_size, rank=device, global_rank=global_rank, batch_size=args.batch_size, dataloader_num_workers=args.dataloader_num_workers, config_path=args.config_path, output_latent_folder=args.output_latent_folder, pretrained_model_name_or_path=args.pretrained_model_name_or_path, siglip_model_name_or_path=args.siglip_model_name_or_path )