SuperCS's picture
Add files using upload-large-folder tool
751adfb verified
import torch
import numpy as np
from diffusers import WanImageToVideoPipeline, AutoencoderKLWan
from diffusers.utils import export_to_video, load_image
model_id = "/mnt/bn/yufan-dev-my/ysh/Ckpts/Wan-AI/Wan2.2-TI2V-5B-Diffusers"
dtype = torch.bfloat16
device = "cuda"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(model_id, vae=vae, torch_dtype=dtype)
vae.to(device)
pipe.to(device)
# use default wan image processor to resize and crop the image
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
)
max_area = 480 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
height, width = image.height, image.width
print(f"height: {height}, width: {width}")
num_frames = 121
num_inference_steps = 50
guidance_scale = 5.0
prompt = "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
negative_prompt = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走"
output = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
).frames[0]
export_to_video(output, "yiyi_test_6_ti2v_5b_output.mp4", fps=24)