SuperCS's picture
Add files using upload-large-folder tool
839dda3 verified
from typing import Tuple
from einops import rearrange
from torch import nn
import torch.distributed as dist
import torch
from pipeline import SelfForcingTrainingPipeline
from utils.loss import get_denoising_loss
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder, WanVAEWrapper
class BaseModel(nn.Module):
def __init__(self, args, device):
super().__init__()
self._initialize_models(args, device)
self.device = device
self.args = args
self.dtype = torch.bfloat16 if args.mixed_precision else torch.float32
if hasattr(args, "denoising_step_list"):
self.denoising_step_list = torch.tensor(args.denoising_step_list, dtype=torch.long)
if args.warp_denoising_step:
timesteps = torch.cat((self.scheduler.timesteps.cpu(), torch.tensor([0], dtype=torch.float32)))
self.denoising_step_list = timesteps[1000 - self.denoising_step_list]
def _initialize_models(self, args, device):
self.real_model_name = getattr(args, "real_name", "Wan2.1-T2V-1.3B")
self.fake_model_name = getattr(args, "fake_name", "Wan2.1-T2V-1.3B")
self.generator = WanDiffusionWrapper(**getattr(args, "model_kwargs", {}), is_causal=True)
self.generator.model.requires_grad_(True)
self.real_score = WanDiffusionWrapper(model_name=self.real_model_name, is_causal=False)
self.real_score.model.requires_grad_(False)
self.fake_score = WanDiffusionWrapper(model_name=self.fake_model_name, is_causal=False)
self.fake_score.model.requires_grad_(True)
self.text_encoder = WanTextEncoder()
self.text_encoder.requires_grad_(False)
self.vae = WanVAEWrapper()
self.vae.requires_grad_(False)
self.scheduler = self.generator.get_scheduler()
self.scheduler.timesteps = self.scheduler.timesteps.to(device)
def _get_timestep(
self,
min_timestep: int,
max_timestep: int,
batch_size: int,
num_frame: int,
num_frame_per_block: int,
uniform_timestep: bool = False
) -> torch.Tensor:
"""
Randomly generate a timestep tensor based on the generator's task type. It uniformly samples a timestep
from the range [min_timestep, max_timestep], and returns a tensor of shape [batch_size, num_frame].
- If uniform_timestep, it will use the same timestep for all frames.
- If not uniform_timestep, it will use a different timestep for each block.
"""
if uniform_timestep:
timestep = torch.randint(
min_timestep,
max_timestep,
[batch_size, 1],
device=self.device,
dtype=torch.long
).repeat(1, num_frame)
return timestep
else:
timestep = torch.randint(
min_timestep,
max_timestep,
[batch_size, num_frame],
device=self.device,
dtype=torch.long
)
# make the noise level the same within every block
if self.independent_first_frame:
# the first frame is always kept the same
timestep_from_second = timestep[:, 1:]
timestep_from_second = timestep_from_second.reshape(
timestep_from_second.shape[0], -1, num_frame_per_block)
timestep_from_second[:, :, 1:] = timestep_from_second[:, :, 0:1]
timestep_from_second = timestep_from_second.reshape(
timestep_from_second.shape[0], -1)
timestep = torch.cat([timestep[:, 0:1], timestep_from_second], dim=1)
else:
timestep = timestep.reshape(
timestep.shape[0], -1, num_frame_per_block)
timestep[:, :, 1:] = timestep[:, :, 0:1]
timestep = timestep.reshape(timestep.shape[0], -1)
return timestep
class SelfForcingModel(BaseModel):
def __init__(self, args, device):
super().__init__(args, device)
self.denoising_loss_func = get_denoising_loss(args.denoising_loss_type)()
def _run_generator(
self,
image_or_video_shape,
conditional_dict: dict,
initial_latent: torch.tensor = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Optionally simulate the generator's input from noise using backward simulation
and then run the generator for one-step.
Input:
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
- initial_latent: a tensor containing the initial latents [B, F, C, H, W].
Output:
- pred_image: a tensor with shape [B, F, C, H, W].
- denoised_timestep: an integer
"""
# Step 1: Sample noise and backward simulate the generator's input
assert getattr(self.args, "backward_simulation", True), "Backward simulation needs to be enabled"
if initial_latent is not None:
conditional_dict["initial_latent"] = initial_latent
if self.args.i2v:
noise_shape = [image_or_video_shape[0], image_or_video_shape[1] - 1, *image_or_video_shape[2:]]
else:
noise_shape = image_or_video_shape.copy()
# During training, the number of generated frames should be uniformly sampled from
# [21, self.num_training_frames], but still being a multiple of self.num_frame_per_block
min_num_frames = 20 if self.args.independent_first_frame else 21
max_num_frames = self.num_training_frames - 1 if self.args.independent_first_frame else self.num_training_frames
assert max_num_frames % self.num_frame_per_block == 0
assert min_num_frames % self.num_frame_per_block == 0
max_num_blocks = max_num_frames // self.num_frame_per_block
min_num_blocks = min_num_frames // self.num_frame_per_block
num_generated_blocks = torch.randint(min_num_blocks, max_num_blocks + 1, (1,), device=self.device)
dist.broadcast(num_generated_blocks, src=0)
num_generated_blocks = num_generated_blocks.item()
num_generated_frames = num_generated_blocks * self.num_frame_per_block
if self.args.independent_first_frame and initial_latent is None:
num_generated_frames += 1
min_num_frames += 1
# Sync num_generated_frames across all processes
noise_shape[1] = num_generated_frames
pred_image_or_video, denoised_timestep_from, denoised_timestep_to = self._consistency_backward_simulation(
noise=torch.randn(noise_shape,
device=self.device, dtype=self.dtype),
**conditional_dict,
)
# Slice last 21 frames
if pred_image_or_video.shape[1] > 21:
with torch.no_grad():
# Reencode to get image latent
latent_to_decode = pred_image_or_video[:, :-20, ...]
# Deccode to video
pixels = self.vae.decode_to_pixel(latent_to_decode)
frame = pixels[:, -1:, ...].to(self.dtype)
frame = rearrange(frame, "b t c h w -> b c t h w")
# Encode frame to get image latent
image_latent = self.vae.encode_to_latent(frame).to(self.dtype)
pred_image_or_video_last_21 = torch.cat([image_latent, pred_image_or_video[:, -20:, ...]], dim=1)
else:
pred_image_or_video_last_21 = pred_image_or_video
if num_generated_frames != min_num_frames:
# Currently, we do not use gradient for the first chunk, since it contains image latents
gradient_mask = torch.ones_like(pred_image_or_video_last_21, dtype=torch.bool)
if self.args.independent_first_frame:
gradient_mask[:, :1] = False
else:
gradient_mask[:, :self.num_frame_per_block] = False
else:
gradient_mask = None
pred_image_or_video_last_21 = pred_image_or_video_last_21.to(self.dtype)
return pred_image_or_video_last_21, gradient_mask, denoised_timestep_from, denoised_timestep_to
def _consistency_backward_simulation(
self,
noise: torch.Tensor,
**conditional_dict: dict
) -> torch.Tensor:
"""
Simulate the generator's input from noise to avoid training/inference mismatch.
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
Here we use the consistency sampler (https://arxiv.org/abs/2303.01469)
Input:
- noise: a tensor sampled from N(0, 1) with shape [B, F, C, H, W] where the number of frame is 1 for images.
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
Output:
- output: a tensor with shape [B, T, F, C, H, W].
T is the total number of timesteps. output[0] is a pure noise and output[i] and i>0
represents the x0 prediction at each timestep.
"""
if self.inference_pipeline is None:
self._initialize_inference_pipeline()
return self.inference_pipeline.inference_with_trajectory(
noise=noise, **conditional_dict
)
def _initialize_inference_pipeline(self):
"""
Lazy initialize the inference pipeline during the first backward simulation run.
Here we encapsulate the inference code with a model-dependent outside function.
We pass our FSDP-wrapped modules into the pipeline to save memory.
"""
self.inference_pipeline = SelfForcingTrainingPipeline(
denoising_step_list=self.denoising_step_list,
scheduler=self.scheduler,
generator=self.generator,
num_frame_per_block=self.num_frame_per_block,
independent_first_frame=self.args.independent_first_frame,
same_step_across_blocks=self.args.same_step_across_blocks,
last_step_only=self.args.last_step_only,
num_max_frames=self.num_training_frames,
context_noise=self.args.context_noise
)