SuperCS's picture
Add files using upload-large-folder tool
b4feb07 verified
from causvid.models.wan.wan_base.modules.attention import attention
from causvid.models.wan.wan_base.modules.model import (
WanRMSNorm,
rope_apply,
WanLayerNorm,
WAN_CROSSATTENTION_CLASSES,
Head,
rope_params,
MLPProj,
sinusoidal_embedding_1d
)
from torch.nn.attention.flex_attention import create_block_mask, flex_attention
from diffusers.configuration_utils import ConfigMixin, register_to_config
from torch.nn.attention.flex_attention import BlockMask
from diffusers.models.modeling_utils import ModelMixin
import torch.nn as nn
import torch
import math
# wan 1.3B model has a weird channel / head configurations and require max-autotune to work with flexattention
# see https://github.com/pytorch/pytorch/issues/133254
# change to default for other models
flex_attention = torch.compile(
flex_attention, dynamic=False, mode="max-autotune")
def causal_rope_apply(x, grid_sizes, freqs, start_frame=0):
n, c = x.size(2), x.size(3) // 2
# split freqs
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
# loop over samples
output = []
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
seq_len = f * h * w
# precompute multipliers
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(
seq_len, n, -1, 2))
freqs_i = torch.cat([
freqs[0][start_frame:start_frame + f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
],
dim=-1).reshape(seq_len, 1, -1)
# apply rotary embedding
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
x_i = torch.cat([x_i, x[i, seq_len:]])
# append to collection
output.append(x_i)
return torch.stack(output).type_as(x)
class CausalWanSelfAttention(nn.Module):
def __init__(self,
dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
eps=1e-6):
assert dim % num_heads == 0
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.eps = eps
# layers
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.o = nn.Linear(dim, dim)
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def forward(self, x, seq_lens, grid_sizes, freqs, block_mask, kv_cache=None, current_start=0, current_end=0):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
seq_lens(Tensor): Shape [B]
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
block_mask (BlockMask)
"""
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
# query, key, value function
def qkv_fn(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n, d)
return q, k, v
q, k, v = qkv_fn(x)
if kv_cache is None:
roped_query = rope_apply(q, grid_sizes, freqs).type_as(v)
roped_key = rope_apply(k, grid_sizes, freqs).type_as(v)
padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1]
padded_roped_query = torch.cat(
[roped_query,
torch.zeros([q.shape[0], padded_length, q.shape[2], q.shape[3]],
device=q.device, dtype=v.dtype)],
dim=1
)
padded_roped_key = torch.cat(
[roped_key, torch.zeros([k.shape[0], padded_length, k.shape[2], k.shape[3]],
device=k.device, dtype=v.dtype)],
dim=1
)
padded_v = torch.cat(
[v, torch.zeros([v.shape[0], padded_length, v.shape[2], v.shape[3]],
device=v.device, dtype=v.dtype)],
dim=1
)
# print(q.shape, k.shape, v.shape, padded_roped_query.shape, padded_roped_key.shape, padded_v.shape)
x = flex_attention(
query=padded_roped_query.transpose(2, 1),
key=padded_roped_key.transpose(2, 1),
value=padded_v.transpose(2, 1),
block_mask=block_mask
)[:, :, :-padded_length].transpose(2, 1)
else:
roped_query = causal_rope_apply(
q, grid_sizes, freqs, start_frame=current_start // math.prod(grid_sizes[0][1:]).item()).type_as(v)
roped_key = causal_rope_apply(
k, grid_sizes, freqs, start_frame=current_start // math.prod(grid_sizes[0][1:]).item()).type_as(v)
kv_cache["k"][:, current_start:current_end] = roped_key
kv_cache["v"][:, current_start:current_end] = v
x = attention(roped_query, kv_cache["k"][:, :current_end], kv_cache["v"][:, :current_end])
# print(x.shape, q.shape, k.shape, v.shape, roped_query.shape, roped_key.shape, kv_cache["k"][:, :current_end].shape, kv_cache["v"][:, :current_end].shape)
# output
x = x.flatten(2)
x = self.o(x)
return x
class CausalWanAttentionBlock(nn.Module):
def __init__(self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6):
super().__init__()
self.dim = dim
self.ffn_dim = ffn_dim
self.num_heads = num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# layers
self.norm1 = WanLayerNorm(dim, eps)
self.self_attn = CausalWanSelfAttention(dim, num_heads, window_size, qk_norm,
eps)
self.norm3 = WanLayerNorm(
dim, eps,
elementwise_affine=True) if cross_attn_norm else nn.Identity()
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
num_heads,
(-1, -1),
qk_norm,
eps)
self.norm2 = WanLayerNorm(dim, eps)
self.ffn = nn.Sequential(
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
nn.Linear(ffn_dim, dim))
# modulation
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
def forward(
self,
x,
e,
seq_lens,
grid_sizes,
freqs,
context,
context_lens,
block_mask,
kv_cache=None,
crossattn_cache=None,
current_start=0,
current_end=0
):
r"""
Args:
x(Tensor): Shape [B, L, C]
e(Tensor): Shape [B, F, 6, C]
seq_lens(Tensor): Shape [B], length of each sequence in batch
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1]
# assert e.dtype == torch.float32
# with amp.autocast(dtype=torch.float32):
e = (self.modulation.unsqueeze(1) + e).chunk(6, dim=2)
# assert e[0].dtype == torch.float32
# self-attention
y = self.self_attn(
(self.norm1(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen))
* (1 + e[1]) + e[0]).flatten(1, 2),
seq_lens, grid_sizes,
freqs, block_mask, kv_cache, current_start, current_end)
# with amp.autocast(dtype=torch.float32):
x = x + (y.unflatten(dim=1, sizes=(num_frames, frame_seqlen))
* e[2]).flatten(1, 2)
# cross-attention & ffn function
def cross_attn_ffn(x, context, context_lens, e, crossattn_cache=None):
x = x + self.cross_attn(self.norm3(x), context,
context_lens, crossattn_cache=crossattn_cache)
y = self.ffn(
(self.norm2(x).unflatten(dim=1, sizes=(num_frames,
frame_seqlen)) * (1 + e[4]) + e[3]).flatten(1, 2)
)
# with amp.autocast(dtype=torch.float32):
x = x + (y.unflatten(dim=1, sizes=(num_frames,
frame_seqlen)) * e[5]).flatten(1, 2)
return x
x = cross_attn_ffn(x, context, context_lens, e, crossattn_cache)
return x
class CausalHead(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
super().__init__()
self.dim = dim
self.out_dim = out_dim
self.patch_size = patch_size
self.eps = eps
# layers
out_dim = math.prod(patch_size) * out_dim
self.norm = WanLayerNorm(dim, eps)
self.head = nn.Linear(dim, out_dim)
# modulation
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
def forward(self, x, e):
r"""
Args:
x(Tensor): Shape [B, L1, C]
e(Tensor): Shape [B, F, 1, C]
"""
# assert e.dtype == torch.float32
# with amp.autocast(dtype=torch.float32):
num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1]
e = (self.modulation.unsqueeze(1) + e).chunk(2, dim=2)
x = (self.head(
self.norm(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) *
(1 + e[1]) + e[0]))
return x
class CausalWanModel(ModelMixin, ConfigMixin):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
ignore_for_config = [
'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size'
]
_no_split_modules = ['WanAttentionBlock']
_supports_gradient_checkpointing = True
@register_to_config
def __init__(self,
model_type='t2v',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6):
r"""
Initialize the diffusion model backbone.
Args:
model_type (`str`, *optional*, defaults to 't2v'):
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
text_len (`int`, *optional*, defaults to 512):
Fixed length for text embeddings
in_dim (`int`, *optional*, defaults to 16):
Input video channels (C_in)
dim (`int`, *optional*, defaults to 2048):
Hidden dimension of the transformer
ffn_dim (`int`, *optional*, defaults to 8192):
Intermediate dimension in feed-forward network
freq_dim (`int`, *optional*, defaults to 256):
Dimension for sinusoidal time embeddings
text_dim (`int`, *optional*, defaults to 4096):
Input dimension for text embeddings
out_dim (`int`, *optional*, defaults to 16):
Output video channels (C_out)
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads
num_layers (`int`, *optional*, defaults to 32):
Number of transformer blocks
window_size (`tuple`, *optional*, defaults to (-1, -1)):
Window size for local attention (-1 indicates global attention)
qk_norm (`bool`, *optional*, defaults to True):
Enable query/key normalization
cross_attn_norm (`bool`, *optional*, defaults to False):
Enable cross-attention normalization
eps (`float`, *optional*, defaults to 1e-6):
Epsilon value for normalization layers
"""
super().__init__()
assert model_type in ['t2v', 'i2v']
self.model_type = model_type
self.patch_size = patch_size
self.text_len = text_len
self.in_dim = in_dim
self.dim = dim
self.ffn_dim = ffn_dim
self.freq_dim = freq_dim
self.text_dim = text_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.num_layers = num_layers
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# embeddings
self.patch_embedding = nn.Conv3d(
in_dim, dim, kernel_size=patch_size, stride=patch_size)
self.text_embedding = nn.Sequential(
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
nn.Linear(dim, dim))
self.time_embedding = nn.Sequential(
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
self.time_projection = nn.Sequential(
nn.SiLU(), nn.Linear(dim, dim * 6))
# blocks
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
self.blocks = nn.ModuleList([
CausalWanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
window_size, qk_norm, cross_attn_norm, eps)
for _ in range(num_layers)
])
# head
self.head = CausalHead(dim, out_dim, patch_size, eps)
# buffers (don't use register_buffer otherwise dtype will be changed in to())
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
d = dim // num_heads
self.freqs = torch.cat([
rope_params(1024, d - 4 * (d // 6)),
rope_params(1024, 2 * (d // 6)),
rope_params(1024, 2 * (d // 6))
],
dim=1)
if model_type == 'i2v':
self.img_emb = MLPProj(1280, dim)
# initialize weights
self.init_weights()
self.gradient_checkpointing = False
self.block_mask = None
self.num_frame_per_block = 1
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
@staticmethod
def _prepare_blockwise_causal_attn_mask(
device: torch.device | str, num_frames: int = 21,
frame_seqlen: int = 1560, num_frame_per_block=1
) -> BlockMask:
"""
we will divide the token sequence into the following format
[1 latent frame] [1 latent frame] ... [1 latent frame]
We use flexattention to construct the attention mask
"""
total_length = num_frames * frame_seqlen
# we do right padding to get to a multiple of 128
padded_length = math.ceil(total_length / 128) * 128 - total_length
ends = torch.zeros(total_length + padded_length,
device=device, dtype=torch.long)
# Block-wise causal mask will attend to all elements that are before the end of the current chunk
frame_indices = torch.arange(
start=0,
end=total_length,
step=frame_seqlen * num_frame_per_block,
device=device
)
for tmp in frame_indices:
ends[tmp:tmp + frame_seqlen * num_frame_per_block] = tmp + \
frame_seqlen * num_frame_per_block
def attention_mask(b, h, q_idx, kv_idx):
return (kv_idx < ends[q_idx]) | (q_idx == kv_idx)
# return ((kv_idx < total_length) & (q_idx < total_length)) | (q_idx == kv_idx) # bidirectional mask
block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length,
KV_LEN=total_length + padded_length, _compile=False, device=device)
import torch.distributed as dist
if not dist.is_initialized() or dist.get_rank() == 0:
print(
f" cache a block wise causal mask with block size of {num_frame_per_block} frames")
print(block_mask)
return block_mask
def _forward_inference(
self,
x,
t,
context,
seq_len,
clip_fea=None,
y=None,
kv_cache: dict = None,
crossattn_cache: dict = None,
current_start: int = 0,
current_end: int = 0
):
r"""
Run the diffusion model with kv caching.
See Algorithm 2 of CausVid paper https://arxiv.org/abs/2412.07772 for details.
This function will be run for num_frame times.
Process the latent frames one by one (1560 tokens each)
Args:
x (List[Tensor]):
List of input video tensors, each with shape [C_in, F, H, W]
t (Tensor):
Diffusion timesteps tensor of shape [B]
context (List[Tensor]):
List of text embeddings each with shape [L, C]
seq_len (`int`):
Maximum sequence length for positional encoding
clip_fea (Tensor, *optional*):
CLIP image features for image-to-video mode
y (List[Tensor], *optional*):
Conditional video inputs for image-to-video mode, same shape as x
Returns:
List[Tensor]:
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
"""
if self.model_type == 'i2v':
assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
if self.freqs.device != device:
self.freqs = self.freqs.to(device)
if y is not None:
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
# embeddings
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
grid_sizes = torch.stack(
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
x = [u.flatten(2).transpose(1, 2) for u in x]
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
assert seq_lens.max() <= seq_len
x = torch.cat(x)
"""
torch.cat([
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
dim=1) for u in x
])
"""
# time embeddings
# with amp.autocast(dtype=torch.float32):
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x))
e0 = self.time_projection(e).unflatten(
1, (6, self.dim)).unflatten(dim=0, sizes=t.shape)
# assert e.dtype == torch.float32 and e0.dtype == torch.float32
# context
context_lens = None
context = self.text_embedding(
torch.stack([
torch.cat(
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
for u in context
]))
if clip_fea is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
# arguments
kwargs = dict(
e=e0,
seq_lens=seq_lens,
grid_sizes=grid_sizes,
freqs=self.freqs,
context=context,
context_lens=context_lens,
block_mask=self.block_mask
)
def create_custom_forward(module):
def custom_forward(*inputs, **kwargs):
return module(*inputs, **kwargs)
return custom_forward
for block_index, block in enumerate(self.blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
assert False
else:
kwargs.update(
{
"kv_cache": kv_cache[block_index],
"crossattn_cache": crossattn_cache[block_index],
"current_start": current_start,
"current_end": current_end
}
)
x = block(x, **kwargs)
# head
x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2))
# unpatchify
x = self.unpatchify(x, grid_sizes)
return torch.stack(x)
def _forward_train(
self,
x,
t,
context,
seq_len,
clip_fea=None,
y=None,
):
r"""
Forward pass through the diffusion model
Args:
x (List[Tensor]):
List of input video tensors, each with shape [C_in, F, H, W]
t (Tensor):
Diffusion timesteps tensor of shape [B]
context (List[Tensor]):
List of text embeddings each with shape [L, C]
seq_len (`int`):
Maximum sequence length for positional encoding
clip_fea (Tensor, *optional*):
CLIP image features for image-to-video mode
y (List[Tensor], *optional*):
Conditional video inputs for image-to-video mode, same shape as x
Returns:
List[Tensor]:
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
"""
if self.model_type == 'i2v':
assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
if self.freqs.device != device:
self.freqs = self.freqs.to(device)
# Construct blockwise causal attn mask
if self.block_mask is None:
self.block_mask = self._prepare_blockwise_causal_attn_mask(
device, num_frames=x.shape[2],
frame_seqlen=x.shape[-2] *
x.shape[-1] // (self.patch_size[1] * self.patch_size[2]),
num_frame_per_block=self.num_frame_per_block
)
if y is not None:
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
# embeddings
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
grid_sizes = torch.stack(
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
x = [u.flatten(2).transpose(1, 2) for u in x]
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
assert seq_lens.max() <= seq_len
x = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x])
# time embeddings
# with amp.autocast(dtype=torch.float32):
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x))
e0 = self.time_projection(e).unflatten(
1, (6, self.dim)).unflatten(dim=0, sizes=t.shape)
# assert e.dtype == torch.float32 and e0.dtype == torch.float32
# context
context_lens = None
context = self.text_embedding(
torch.stack([
torch.cat(
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
for u in context
]))
if clip_fea is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
# arguments
kwargs = dict(
e=e0,
seq_lens=seq_lens,
grid_sizes=grid_sizes,
freqs=self.freqs,
context=context,
context_lens=context_lens,
block_mask=self.block_mask)
def create_custom_forward(module):
def custom_forward(*inputs, **kwargs):
return module(*inputs, **kwargs)
return custom_forward
for block in self.blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
x, **kwargs,
use_reentrant=False,
)
else:
x = block(x, **kwargs)
# head
x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2))
# unpatchify
x = self.unpatchify(x, grid_sizes)
return torch.stack(x)
def forward(
self,
*args,
**kwargs
):
if kwargs.get('kv_cache', None) is not None:
return self._forward_inference(*args, **kwargs)
else:
return self._forward_train(*args, **kwargs)
def unpatchify(self, x, grid_sizes):
r"""
Reconstruct video tensors from patch embeddings.
Args:
x (List[Tensor]):
List of patchified features, each with shape [L, C_out * prod(patch_size)]
grid_sizes (Tensor):
Original spatial-temporal grid dimensions before patching,
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
Returns:
List[Tensor]:
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
"""
c = self.out_dim
out = []
for u, v in zip(x, grid_sizes.tolist()):
u = u[:math.prod(v)].view(*v, *self.patch_size, c)
u = torch.einsum('fhwpqrc->cfphqwr', u)
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
out.append(u)
return out
def init_weights(self):
r"""
Initialize model parameters using Xavier initialization.
"""
# basic init
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
# init embeddings
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
for m in self.text_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=.02)
for m in self.time_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=.02)
# init output layer
nn.init.zeros_(self.head.head.weight)