|
|
import os |
|
|
from tqdm import tqdm |
|
|
from diffusers import AutoencoderKLHunyuanVideo |
|
|
from transformers import ( |
|
|
CLIPTextModel, |
|
|
CLIPTokenizer, |
|
|
LlamaModel, |
|
|
LlamaTokenizerFast, |
|
|
SiglipImageProcessor, |
|
|
SiglipVisionModel, |
|
|
) |
|
|
from diffusers.video_processor import VideoProcessor |
|
|
from diffusers.utils import export_to_video, load_image |
|
|
|
|
|
from dataset_tool import CollectionDataset, collate_fn_map |
|
|
from omegaconf import OmegaConf |
|
|
from torch.utils.data import DataLoader |
|
|
|
|
|
import torch |
|
|
import torch.distributed as dist |
|
|
import torch.nn as nn |
|
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
|
import torchvision.transforms as transforms |
|
|
import numpy as np |
|
|
import matplotlib.pyplot as plt |
|
|
from matplotlib.animation import FuncAnimation |
|
|
from IPython.display import HTML, display |
|
|
from IPython.display import clear_output |
|
|
|
|
|
from accelerate import Accelerator, DistributedType |
|
|
from accelerate.logging import get_logger |
|
|
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed |
|
|
|
|
|
from utils_framepack import encode_image, encode_prompt |
|
|
|
|
|
def main(rank, world_size): |
|
|
weight_dtype = torch.bfloat16 |
|
|
batch_size = 2 |
|
|
dataloader_num_workers = 0 |
|
|
output_latent_folder = "/mnt/bn/yufan-dev-my/ysh/Datasets/fp_offload_latents" |
|
|
pretrained_model_name_or_path = "/mnt/bn/yufan-dev-my/ysh/Ckpts/hunyuanvideo-community/HunyuanVideo" |
|
|
siglip_model_name_or_path = "/mnt/bn/yufan-dev-my/ysh/Ckpts/lllyasviel/flux_redux_bfl" |
|
|
os.makedirs(output_latent_folder, exist_ok=True) |
|
|
|
|
|
device = "cuda" |
|
|
|
|
|
|
|
|
tokenizer_one = LlamaTokenizerFast.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
subfolder="tokenizer", |
|
|
) |
|
|
tokenizer_two = CLIPTokenizer.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
subfolder="tokenizer_2", |
|
|
) |
|
|
feature_extractor = SiglipImageProcessor.from_pretrained( |
|
|
siglip_model_name_or_path, |
|
|
subfolder="feature_extractor", |
|
|
|
|
|
) |
|
|
|
|
|
vae = AutoencoderKLHunyuanVideo.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
subfolder="vae", |
|
|
torch_dtype=torch.float32, |
|
|
) |
|
|
vae_scale_factor_spatial = vae.spatial_compression_ratio |
|
|
video_processor = VideoProcessor(vae_scale_factor=vae_scale_factor_spatial) |
|
|
|
|
|
text_encoder_one = LlamaModel.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
subfolder="text_encoder", |
|
|
torch_dtype=weight_dtype, |
|
|
) |
|
|
text_encoder_two = CLIPTextModel.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
subfolder="text_encoder_2", |
|
|
torch_dtype=weight_dtype, |
|
|
) |
|
|
image_encoder = SiglipVisionModel.from_pretrained( |
|
|
siglip_model_name_or_path, |
|
|
subfolder="image_encoder", |
|
|
torch_dtype=weight_dtype, |
|
|
) |
|
|
|
|
|
vae.requires_grad_(False) |
|
|
text_encoder_one.requires_grad_(False) |
|
|
text_encoder_two.requires_grad_(False) |
|
|
image_encoder.requires_grad_(False) |
|
|
vae.eval() |
|
|
text_encoder_one.eval() |
|
|
text_encoder_two.eval() |
|
|
image_encoder.eval() |
|
|
|
|
|
vae = vae.to(device) |
|
|
text_encoder_one = text_encoder_one.to(device) |
|
|
text_encoder_two = text_encoder_two.to(device) |
|
|
image_encoder = image_encoder.to(device) |
|
|
|
|
|
configs = OmegaConf.load("512_collection_config_vae1011_aligned_full_dump.yaml") |
|
|
dataset = CollectionDataset.create_dataset_function(configs['train_data'], |
|
|
configs['train_data_weights'], |
|
|
**configs['data']['params']) |
|
|
dataloader = DataLoader( |
|
|
dataset, |
|
|
shuffle=False, |
|
|
batch_size=batch_size, |
|
|
num_workers=dataloader_num_workers, |
|
|
collate_fn=collate_fn_map, |
|
|
pin_memory=True, |
|
|
prefetch_factor=2 if dataloader_num_workers != 0 else None, |
|
|
persistent_workers=True if dataloader_num_workers != 0 else False, |
|
|
) |
|
|
|
|
|
for idx, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc="Processing batches"): |
|
|
exis_flag = True |
|
|
num_frames = batch["video_metadata"]["num_frames"] |
|
|
for uttid, num_frame in batch["uttid"], num_frames: |
|
|
output_path = os.path.join(output_latent_folder, f"{uttid}_{num_frame}.pt") |
|
|
if not os.path.exists(output_path): |
|
|
exis_flag = False |
|
|
break |
|
|
if exis_flag: |
|
|
print("skipping!") |
|
|
continue |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
|
|
pixel_values = batch["videos"].permute(0, 2, 1, 3, 4).to(dtype=vae.dtype, device=device) |
|
|
vae_latents = vae.encode(pixel_values).latent_dist.sample() |
|
|
vae_latents = vae_latents * vae.config.scaling_factor |
|
|
|
|
|
|
|
|
prompts = batch["prompts"] |
|
|
prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = encode_prompt( |
|
|
tokenizer=tokenizer_one, |
|
|
text_encoder=text_encoder_one, |
|
|
tokenizer_2=tokenizer_two, |
|
|
text_encoder_2=text_encoder_two, |
|
|
prompt=prompts, |
|
|
device=device, |
|
|
) |
|
|
|
|
|
|
|
|
image_tensor = batch["first_frames_images"] |
|
|
images = [transforms.ToPILImage()(x.to(torch.uint8)) for x in image_tensor] |
|
|
image = video_processor.preprocess(image=images, height=batch["videos"].shape[-2], width=batch["videos"].shape[-1]) |
|
|
image_embeds = encode_image( |
|
|
feature_extractor, |
|
|
image_encoder, |
|
|
image, |
|
|
device=device, |
|
|
dtype=weight_dtype, |
|
|
) |
|
|
|
|
|
for uttid, cur_vae_latent, cur_prompt_embed, cur_pooled_prompt_embed, cur_prompt_attention_mask, cur_image_embed in zip(batch["uttid"], vae_latents, prompt_embeds, pooled_prompt_embeds, prompt_attention_mask, image_embeds): |
|
|
output_path = os.path.join(output_latent_folder, f"{uttid}_{pixel_values.shape[2]}.pt") |
|
|
torch.save( |
|
|
{ |
|
|
"vae_latent": cur_vae_latent.cpu().detach(), |
|
|
"prompt_embed": cur_prompt_embed.cpu().detach(), |
|
|
"pooled_prompt_embeds": cur_pooled_prompt_embed.cpu().detach(), |
|
|
"prompt_attention_mask": cur_prompt_attention_mask.cpu().detach(), |
|
|
"image_embeds": cur_image_embed.cpu().detach(), |
|
|
}, |
|
|
output_path |
|
|
) |
|
|
print(f"save to: {output_path}") |
|
|
|
|
|
def setup_distributed_env(): |
|
|
dist.init_process_group(backend="nccl") |
|
|
torch.cuda.set_device(int(os.environ["LOCAL_RANK"])) |
|
|
|
|
|
def cleanup_distributed_env(): |
|
|
dist.destroy_process_group() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
setup_distributed_env() |
|
|
|
|
|
global_rank = dist.get_rank() |
|
|
local_rank = int(os.environ["LOCAL_RANK"]) |
|
|
device = torch.cuda.current_device() |
|
|
world_size = dist.get_world_size() |
|
|
|
|
|
main(world_size=world_size, rank = device) |