File size: 15,316 Bytes
e31e7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import math
import html
import ftfy
import regex as re
import random
from typing import Any, Dict, List, Optional, Tuple, Union
import argparse
import os
from tqdm import tqdm
from diffusers import AutoencoderKLWan
from transformers import (
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionModel,
UMT5EncoderModel,
SiglipImageProcessor,
SiglipVisionModel
)
from diffusers.video_processor import VideoProcessor
from diffusers.utils import export_to_video, load_image
from dataset_tool import CollectionDataset, collate_fn_map
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import Subset
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from IPython.display import HTML, display
from IPython.display import clear_output # 用于清理历史输出
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from diffusers.training_utils import free_memory
from utils_framepack import encode_image
def encode_image_1(
image_processor,
image_encoder,
image,
device: Optional[torch.device] = "cuda",
):
device = device
image = image_processor(images=image, return_tensors="pt").to(device)
image_embeds = image_encoder(**image, output_hidden_states=True)
return image_embeds.hidden_states[-2]
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
def prompt_clean(text):
text = whitespace_clean(basic_clean(text))
return text
def _get_t5_prompt_embeds(
tokenizer,
text_encoder,
prompt: Union[str, List[str]] = None,
num_videos_per_prompt: int = 1,
max_sequence_length: int = 512,
caption_dropout_p: float = 0.0,
device: Optional[torch.device] = "cuda",
dtype: Optional[torch.dtype] = torch.bfloat16,
):
device = device
dtype = dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt = [prompt_clean(u) for u in prompt]
batch_size = len(prompt)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
prompt_embeds = text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
if random.random() < caption_dropout_p:
prompt_embeds.fill_(0)
mask.fill_(False)
seq_lens = mask.gt(0).sum(dim=1).long()
prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
prompt_embeds = torch.stack([
torch.cat([u,
u.new_zeros(max_sequence_length - u.size(0), u.size(1))])
for u in prompt_embeds
],
dim=0)
# duplicate text embeddings for each generation per prompt, using mps friendly method
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt,
seq_len, -1)
return prompt_embeds
# Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline.encode_prompt
def encode_prompt(
tokenizer,
text_encoder,
prompt: Union[str, List[str]],
num_videos_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
max_sequence_length: int = 512,
caption_dropout_p: float = 0.0,
device: Optional[torch.device] = "cuda",
dtype: Optional[torch.dtype] = torch.bfloat16,
):
device = device
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds = _get_t5_prompt_embeds(
tokenizer,
text_encoder,
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
caption_dropout_p=caption_dropout_p,
device=device,
dtype=dtype,
)
return prompt_embeds
def setup_distributed_env():
dist.init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
def cleanup_distributed_env():
dist.destroy_process_group()
def main(rank, world_size, global_rank, batch_size, dataloader_num_workers, config_path, output_latent_folder, pretrained_model_name_or_path, siglip_model_name_or_path):
weight_dtype = torch.bfloat16
# batch_size = 2
# dataloader_num_workers = 8
# config_path = "512_collection_config_vae1011_aligned_full_dump.yaml"
# output_latent_folder = "/mnt/bn/yufan-dev-my/ysh/Datasets/fp_offload_latents"
# pretrained_model_name_or_path = "/mnt/bn/yufan-dev-my/ysh/Ckpts/hunyuanvideo-community/HunyuanVideo"
# siglip_model_name_or_path = "/mnt/bn/yufan-dev-my/ysh/Ckpts/lllyasviel/flux_redux_bfl"
os.makedirs(output_latent_folder, exist_ok=True)
device = rank
# load tokenizers
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
)
clip_image_processor = CLIPImageProcessor.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="image_processor",
)
feature_extractor = SiglipImageProcessor.from_pretrained(
siglip_model_name_or_path,
subfolder="feature_extractor",
)
# load encoders
text_encoder = UMT5EncoderModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=torch.float16,
)
clip_image_encoder = CLIPVisionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
image_encoder = SiglipVisionModel.from_pretrained(
siglip_model_name_or_path,
subfolder="image_encoder",
torch_dtype=weight_dtype,
)
vae = AutoencoderKLWan.from_pretrained(
pretrained_model_name_or_path,
subfolder="vae",
torch_dtype=torch.float32,
)
vae_scale_factor_spatial = vae.spatial_compression_ratio
video_processor = VideoProcessor(vae_scale_factor=vae_scale_factor_spatial)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
clip_image_encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.eval()
text_encoder.eval()
clip_image_encoder.eval()
image_encoder.eval()
vae = vae.to(device)
text_encoder = text_encoder.to(device)
image_encoder = image_encoder.to(device)
clip_image_encoder = clip_image_encoder.to(device)
dist.barrier()
configs = OmegaConf.load(config_path)
dataset = CollectionDataset.create_dataset_function(configs['train_data'],
configs['train_data_weights'],
**configs['data']['params'])
print(len(dataset))
if global_rank == 0:
pbar = tqdm(total=len(dataset) // world_size, desc="Processing")
dist.barrier()
# dataloader = DataLoader(
# dataset,
# shuffle=False,
# batch_size=batch_size,
# collate_fn=collate_fn_map,
# num_workers=dataloader_num_workers,
# pin_memory=True,
# prefetch_factor=2 if dataloader_num_workers != 0 else None,
# persistent_workers=True if dataloader_num_workers != 0 else False,
# )
# def distributed_iterate_dataloader(dataloader, world_size, rank):
# sample_count = 0
# for idx, batch in enumerate(dataloader):
# if sample_count % world_size == rank:
# # No need to call collate_fn_map again as it's already done by DataLoader
# yield batch # Yield the batch directly
# sample_count += 1
# for idx, batch in enumerate(distributed_iterate_dataloader(dataloader, dist.get_world_size(), dist.get_rank())):
def distributed_iterate_dataset(dataset, world_size, rank):
iterator = iter(dataset)
sample_count = 0
while True:
try:
batch = next(iterator)
if sample_count % world_size == rank:
processed_batch = collate_fn_map(batch)
yield processed_batch
sample_count += 1
except StopIteration:
break
for idx, batch in enumerate(distributed_iterate_dataset(dataset, dist.get_world_size(), dist.get_rank())):
valid_indices = []
valid_uttids = []
valid_num_frames = []
valid_heights = []
valid_widths = []
valid_videos = []
valid_prompts = []
valid_first_frames_images = []
for i, (uttid, num_frame, height, width) in enumerate(zip(batch["uttid"], batch["video_metadata"]["num_frames"], batch["video_metadata"]["height"], batch["video_metadata"]["width"])):
output_path = os.path.join(output_latent_folder, f"{uttid}_{num_frame}_{height}_{width}.pt")
if not os.path.exists(output_path):
valid_indices.append(i)
valid_uttids.append(uttid)
valid_num_frames.append(num_frame)
valid_heights.append(height)
valid_widths.append(width)
valid_videos.append(batch["videos"][i])
valid_prompts.append(batch["prompts"][i])
valid_first_frames_images.append(batch["first_frames_images"][i])
else:
print(f"skipping {uttid}")
if not valid_indices:
print("skipping entire batch!")
continue
batch = {
"uttid": valid_uttids,
"video_metadata": {
"num_frames": valid_num_frames,
"height": valid_heights,
"width": valid_widths
},
"videos": torch.stack(valid_videos),
"prompts": valid_prompts,
"first_frames_images": torch.stack(valid_first_frames_images)
}
if len(batch["uttid"]) == 0:
print("All samples in this batch are already processed, skipping!")
continue
with torch.no_grad():
# Get Vae feature
latents_mean = torch.tensor(
vae.config.latents_mean).view(
1, vae.config.z_dim, 1, 1,
1).to(vae.device, vae.dtype)
latents_std = 1.0 / torch.tensor(
vae.config.latents_std).view(
1, vae.config.z_dim, 1, 1, 1).to(
vae.device, vae.dtype)
pixel_values = batch["videos"].permute(0, 2, 1, 3, 4).to(dtype=vae.dtype, device=device)
vae_latents = vae.encode(pixel_values).latent_dist.sample()
vae_latents = (vae_latents - latents_mean) * latents_std
# Encode prompts
prompts = batch["prompts"]
prompt_embeds = encode_prompt(
tokenizer=tokenizer,
text_encoder=text_encoder,
prompt=prompts,
device=device,
)
# Prepare images
image_tensor = batch["first_frames_images"]
images = [transforms.ToPILImage()(x.to(torch.uint8)) for x in image_tensor]
clip_image_embeds = encode_image_1(
image_processor=clip_image_processor,
image_encoder=clip_image_encoder,
image=images,
device=device
)
image = video_processor.preprocess(image=images, height=batch["videos"].shape[-2], width=batch["videos"].shape[-1])
image_embeds = encode_image(
feature_extractor,
image_encoder,
image,
device=device,
dtype=weight_dtype,
)
for uttid, num_frame, height, width, cur_vae_latent, cur_prompt_embed, cur_clip_image_embed, cur_image_embed in zip(batch["uttid"], batch["video_metadata"]["num_frames"], batch["video_metadata"]["height"], batch["video_metadata"]["width"], vae_latents, prompt_embeds, clip_image_embeds, image_embeds):
output_path = os.path.join(output_latent_folder, f"{uttid}_{num_frame}_{height}_{width}.pt")
torch.save(
{
"vae_latent": cur_vae_latent.cpu().detach(),
"prompt_embed": cur_prompt_embed.cpu().detach(),
"clip_image_embeds": cur_clip_image_embed.cpu().detach(),
"image_embeds": cur_image_embed.cpu().detach(),
},
output_path
)
print(f"save to: {output_path}")
if global_rank == 0:
pbar.update(1)
pbar.set_postfix({"batch": idx})
free_memory()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Script for running model training and data processing.")
parser.add_argument("--batch_size", type=int, default=1, help="Batch size for processing")
parser.add_argument("--dataloader_num_workers", type=int, default=8, help="Number of workers for data loading")
parser.add_argument("--config_path", type=str, default="part1.yaml", help="Path to the config file")
parser.add_argument("--output_latent_folder", type=str, default="/mnt/bn/yufan-dev-my/ysh/Datasets/fp_offload_latents_wan", help="Folder to store output latents")
parser.add_argument("--pretrained_model_name_or_path", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/Wan-AI/Wan2.1-I2V-14B-720P-Diffusers/", help="Pretrained model path")
parser.add_argument("--siglip_model_name_or_path", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/lllyasviel/flux_redux_bfl", help="Siglip model path")
args = parser.parse_args()
setup_distributed_env()
global_rank = dist.get_rank()
local_rank = int(os.environ["LOCAL_RANK"])
device = torch.cuda.current_device()
world_size = dist.get_world_size()
main(
world_size=world_size,
rank=device,
global_rank=global_rank,
batch_size=args.batch_size,
dataloader_num_workers=args.dataloader_num_workers,
config_path=args.config_path,
output_latent_folder=args.output_latent_folder,
pretrained_model_name_or_path=args.pretrained_model_name_or_path,
siglip_model_name_or_path=args.siglip_model_name_or_path
) |