Update text
Browse files
text
CHANGED
|
@@ -1,571 +1,248 @@
|
|
| 1 |
-
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
from
|
| 5 |
-
from
|
| 6 |
-
|
| 7 |
from app.config import settings
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
"tblNWCViewExport",
|
| 21 |
-
"tblTypes",
|
| 22 |
-
"tblProjects",
|
| 23 |
-
"tblProjectSubTypes",
|
| 24 |
-
"tblRFISubType",
|
| 25 |
-
"tblViews",
|
| 26 |
-
"tblUsers",
|
| 27 |
-
"tblWorkflowStatuses",
|
| 28 |
-
"tblCategory",
|
| 29 |
-
"tblAssembly",
|
| 30 |
-
"tblElements",
|
| 31 |
-
"tblMaterials",
|
| 32 |
-
"tblModelRoomDetails",
|
| 33 |
-
"tblGeometryDataNew",
|
| 34 |
-
"tblGeometryDataBatchMapping",
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
RELATIONSHIP_SUMMARY = dedent("""\
|
| 38 |
-
# Relational Structure Summary
|
| 39 |
-
|
| 40 |
-
tblModelDetails β (central entity)
|
| 41 |
-
β tblDimensionInfo.ModelID
|
| 42 |
-
β tblInstances.ModelID
|
| 43 |
-
β tblModelBoundingBox.ModelID
|
| 44 |
-
β tblModelCheckerResults.ModelID
|
| 45 |
-
β tblModelDetailsHub.ModelID
|
| 46 |
-
β tblModelFloorPlanMapping.ModelID
|
| 47 |
-
β tblModels.ModelID
|
| 48 |
-
β tblNWCViewExport.ModelID
|
| 49 |
-
β tblTypes.ModelID
|
| 50 |
-
|
| 51 |
-
tblProjects β referenced by:
|
| 52 |
-
tblModelDetails.ProjectID
|
| 53 |
-
tblTypes.ProjectID
|
| 54 |
-
|
| 55 |
-
tblTypes β referenced by:
|
| 56 |
-
tblInstances.TypeID / RFITypeID / ProjectTypeID
|
| 57 |
-
tblProjectSubTypes.TypeID / RFITypeID / ProjectTypeID
|
| 58 |
-
tblRFISubType.TypeID / RFITypeID / ProjectTypeID
|
| 59 |
-
|
| 60 |
-
tblViews β referenced by:
|
| 61 |
-
tblModelBoundingBox.ViewID
|
| 62 |
-
|
| 63 |
-
tblUsers β referenced by:
|
| 64 |
-
tblModelDetails.ExportedBy
|
| 65 |
-
|
| 66 |
-
tblWorkflowStatuses β referenced by:
|
| 67 |
-
tblModelDetails.StatusID
|
| 68 |
-
|
| 69 |
-
tblCategory β referenced by:
|
| 70 |
-
tblTypes.CategoryID
|
| 71 |
-
""")
|
| 72 |
-
|
| 73 |
-
# -------------------------------
|
| 74 |
-
# Cleaning prompt (for culprit columns)
|
| 75 |
-
# -------------------------------
|
| 76 |
-
CLEAN_PROMPT = dedent("""\
|
| 77 |
-
You are cleaning noisy product/part names into a canonical short form.
|
| 78 |
-
|
| 79 |
-
Rules:
|
| 80 |
-
- Normalize inch units: 4", 4 inch, 4 in -> "4 in".
|
| 81 |
-
- Fix obvious misspellings: "elbw" -> "elbow".
|
| 82 |
-
- Remove opaque trailing codes like "-rr20" unless essential to identity.
|
| 83 |
-
- Keep it compact and human-readable.
|
| 84 |
-
- Return ONLY the cleaned text. No quotes, no explanations.
|
| 85 |
-
""")
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
# -------------------------------
|
| 89 |
-
# SQL generation (system prompt)
|
| 90 |
-
# -------------------------------
|
| 91 |
-
SQL_PROMPT_SYSTEM = dedent("""\
|
| 92 |
-
You are an expert Postgres SQL generator.
|
| 93 |
-
|
| 94 |
-
CONTEXT
|
| 95 |
-
- All tables are in the `public` schema of the `TransactionalData` database.
|
| 96 |
-
- The `public` schema already contains cleaned columns (e.g., *_clean).
|
| 97 |
-
- Use only the tables and columns that exist in `public`.
|
| 98 |
-
- You MUST restrict yourself to only the tables/relations that appear in the relational summary
|
| 99 |
-
provided in the user message. Do not invent tables or columns.
|
| 100 |
-
|
| 101 |
-
OUTPUT
|
| 102 |
-
- Return a single SELECT statement only (no CTEs across multiple statements, no DDL/DML).
|
| 103 |
-
- Qualify identifiers when needed using the `public.` schema.
|
| 104 |
-
- Avoid vendor-specific functions beyond standard Postgres.
|
| 105 |
-
- If units appear, assume inches unless the column clearly uses *_mm.
|
| 106 |
-
|
| 107 |
-
JOINING & FILTERING
|
| 108 |
-
- Use only joins that are consistent with the relational summary (respect directionality).
|
| 109 |
-
- When matching human-entered part names/sizes:
|
| 110 |
-
* Prefer cleaned columns (e.g., name_clean, title_clean) when they exist.
|
| 111 |
-
* Otherwise use ILIKE with robust patterns and simple normalization
|
| 112 |
-
(e.g., replace double quotes with " in).
|
| 113 |
-
- Limit columns to those that answer the question clearly.
|
| 114 |
-
|
| 115 |
-
IF UNSURE
|
| 116 |
-
- If the schema lacks a required join path, prefer a simpler query over a wrong join.
|
| 117 |
-
- You may add safe assumptions in comments inside the SQL (using --) but DO NOT return prose.
|
| 118 |
-
""")
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
# -------------------------------
|
| 123 |
-
# Catalog-aware prompt (default for sql_gen)
|
| 124 |
-
# -------------------------------
|
| 125 |
-
def sql_user_prompt(
|
| 126 |
-
question: str,
|
| 127 |
-
catalog_snapshot: Iterable[Dict[str, str]],
|
| 128 |
-
allowed_tables: Iterable[str] = DEFAULT_ALLOWED_TABLES,
|
| 129 |
-
) -> str:
|
| 130 |
-
allowed = list(dict.fromkeys(allowed_tables))
|
| 131 |
-
|
| 132 |
-
# The source and target schema are the same now.
|
| 133 |
-
target_schema = settings.POSTGRES_SOURCE_SCHEMAS
|
| 134 |
-
|
| 135 |
-
column_map: Dict[str, Dict[str, Set[str]]] = {}
|
| 136 |
-
for row in catalog_snapshot:
|
| 137 |
-
row_data = row if isinstance(row, dict) else dict(row)
|
| 138 |
-
schema = row_data.get("table_schema")
|
| 139 |
-
table = row_data.get("table_name")
|
| 140 |
-
column = row_data.get("column_name")
|
| 141 |
-
if not schema or not table or not column:
|
| 142 |
-
continue
|
| 143 |
-
if table not in allowed:
|
| 144 |
-
continue
|
| 145 |
-
column_map.setdefault(schema, {}).setdefault(table, set()).add(column)
|
| 146 |
-
|
| 147 |
-
def render_columns(schema: str) -> List[str]:
|
| 148 |
-
lines: List[str] = []
|
| 149 |
-
tables = column_map.get(schema)
|
| 150 |
-
if not tables:
|
| 151 |
-
return lines
|
| 152 |
-
lines.append(f"{schema}:")
|
| 153 |
-
for table in allowed:
|
| 154 |
-
cols = tables.get(table)
|
| 155 |
-
if not cols:
|
| 156 |
-
continue
|
| 157 |
-
lines.append(f" {table}:")
|
| 158 |
-
for col in sorted(cols):
|
| 159 |
-
lines.append(f" - {col}")
|
| 160 |
-
lines.append("")
|
| 161 |
-
return lines
|
| 162 |
-
|
| 163 |
-
column_lines: List[str] = []
|
| 164 |
-
seen_schemas: Set[str] = set()
|
| 165 |
-
|
| 166 |
-
# Only one schema: public
|
| 167 |
-
for schema in [target_schema]:
|
| 168 |
-
if schema in seen_schemas:
|
| 169 |
-
continue
|
| 170 |
-
seen_schemas.add(schema)
|
| 171 |
-
column_lines.extend(render_columns(schema))
|
| 172 |
-
|
| 173 |
-
if not column_lines:
|
| 174 |
-
columns_block = "(no columns discovered for the curated tables)"
|
| 175 |
-
else:
|
| 176 |
-
columns_block = "\n".join(column_lines).rstrip()
|
| 177 |
-
|
| 178 |
-
relationship_block = RELATIONSHIP_SUMMARY.strip()
|
| 179 |
-
|
| 180 |
-
return dedent(f"""\
|
| 181 |
-
Question: {question}
|
| 182 |
-
|
| 183 |
-
Focus tables and columns (curated set):
|
| 184 |
-
{columns_block}
|
| 185 |
-
|
| 186 |
-
{relationship_block}
|
| 187 |
-
|
| 188 |
-
Guidance:
|
| 189 |
-
- Use tables only from the `public` schema.
|
| 190 |
-
- Prefer cleaned columns (e.g., *_clean) when they exist in `public`.
|
| 191 |
-
- Restrict joins to the relationships shown above; do not invent tables or links.
|
| 192 |
-
- Return ONE PostgreSQL SELECT statement (no modifications).
|
| 193 |
-
""")
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
# -------------------------------
|
| 197 |
-
# Convenience: pack system + user together
|
| 198 |
-
# -------------------------------
|
| 199 |
-
def build_full_sql_prompt(
|
| 200 |
-
question: str,
|
| 201 |
-
allowed_tables: Iterable[str] = DEFAULT_ALLOWED_TABLES,
|
| 202 |
-
catalog_snapshot: Optional[Iterable[Dict[str, str]]] = None,
|
| 203 |
-
) -> Dict[str, str]:
|
| 204 |
-
"""
|
| 205 |
-
Returns {"system": SQL_PROMPT_SYSTEM, "user": <combined user text>}
|
| 206 |
-
"""
|
| 207 |
-
if catalog_snapshot is None:
|
| 208 |
-
from app.db import get_catalog_snapshot # local import to avoid cycles
|
| 209 |
-
catalog_snapshot = get_catalog_snapshot()
|
| 210 |
-
|
| 211 |
-
user = sql_user_prompt(
|
| 212 |
-
question=question,
|
| 213 |
-
catalog_snapshot=catalog_snapshot or [],
|
| 214 |
-
allowed_tables=allowed_tables,
|
| 215 |
-
)
|
| 216 |
-
return {"system": SQL_PROMPT_SYSTEM, "user": user}
|
| 217 |
|
|
|
|
| 218 |
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
|
|
|
|
|
|
| 225 |
|
|
|
|
|
|
|
|
|
|
| 226 |
|
|
|
|
|
|
|
|
|
|
| 227 |
|
|
|
|
|
|
|
| 228 |
|
| 229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
-
import re
|
| 232 |
-
import sqlparse
|
| 233 |
-
from sqlalchemy import text
|
| 234 |
-
from app.db import engine, get_catalog_snapshot
|
| 235 |
-
from app.cleaning.llm import LLM
|
| 236 |
-
from app.cleaning.prompts import SQL_PROMPT_SYSTEM, sql_user_prompt
|
| 237 |
-
from app.config import settings
|
| 238 |
-
|
| 239 |
-
def is_safe_select(sql: str) -> bool:
|
| 240 |
-
parsed = sqlparse.parse(sql)
|
| 241 |
-
if not parsed:
|
| 242 |
-
return False
|
| 243 |
-
stmt = parsed[0]
|
| 244 |
-
if stmt.get_type() != "SELECT":
|
| 245 |
-
return False
|
| 246 |
-
# crude safeguards
|
| 247 |
-
forbidden = re.compile(r'\b(INSERT|UPDATE|DELETE|DROP|TRUNCATE|ALTER|CREATE|GRANT|REVOKE)\b', re.I)
|
| 248 |
-
return not forbidden.search(sql)
|
| 249 |
-
|
| 250 |
-
def _quote_schema_identifiers(sql: str) -> str:
|
| 251 |
-
"""Quote occurrences of <schema>.<identifier> where not already quoted.
|
| 252 |
-
This fixes case-sensitivity issues when the LLM emits MixedCase table names.
|
| 253 |
-
"""
|
| 254 |
-
import re as _re
|
| 255 |
-
schema = settings.POSTGRES_SOURCE_SCHEMAS
|
| 256 |
-
# Quote occurrences like normalizeddata.tblTypes -> "normalizeddata"."tblTypes"
|
| 257 |
-
pat = _re.compile(rf'(?<!\")\b{_re.escape(schema)}\.(?!\")(\w+)', _re.IGNORECASE)
|
| 258 |
-
sql = pat.sub(lambda m: f'"{schema}"."{m.group(1)}"', sql)
|
| 259 |
-
# Also quote public.<identifier> forms
|
| 260 |
-
pat_pub = _re.compile(r'(?<!\")\bpublic\.(?!\")(\w+)', _re.IGNORECASE)
|
| 261 |
-
sql = pat_pub.sub(lambda m: f'"public"."{m.group(1)}"', sql)
|
| 262 |
-
return sql
|
| 263 |
-
|
| 264 |
-
def _quote_alias_columns(sql: str) -> str:
|
| 265 |
-
"""Quote occurrences of alias.column where column isn't already quoted or a wildcard.
|
| 266 |
-
Keeps alias as-is and wraps the column with quotes to preserve case.
|
| 267 |
-
"""
|
| 268 |
-
import re as _re
|
| 269 |
-
# Skip cases like alias."Column" and alias.*
|
| 270 |
-
pat = _re.compile(r'\b([A-Za-z_][\w]*)\.(?!\")(\w+)')
|
| 271 |
-
reserved = {"public", settings.POSTGRES_SOURCE_SCHEMAS.lower(), "pg_catalog", "information_schema"}
|
| 272 |
-
def _repl(m: _re.Match[str]) -> str:
|
| 273 |
-
alias = m.group(1)
|
| 274 |
-
col = m.group(2)
|
| 275 |
-
if alias.lower() in reserved:
|
| 276 |
-
return m.group(0)
|
| 277 |
-
return f'{alias}."{col}"'
|
| 278 |
-
return pat.sub(_repl, sql)
|
| 279 |
-
|
| 280 |
-
def nl_to_sql(question: str) -> str:
|
| 281 |
-
catalog = get_catalog_snapshot()
|
| 282 |
-
prompt = sql_user_prompt(question, catalog)
|
| 283 |
-
llm = LLM()
|
| 284 |
-
if not llm.enabled():
|
| 285 |
-
raise RuntimeError("LLM disabled: set LLM_PROVIDER in .env to enable NLβSQL.")
|
| 286 |
-
sql = llm.nl_to_sql(SQL_PROMPT_SYSTEM, prompt)
|
| 287 |
-
# strip code fences if any
|
| 288 |
-
sql = sql.strip().strip("`")
|
| 289 |
-
if sql.startswith("sql"):
|
| 290 |
-
sql = sql[3:].strip()
|
| 291 |
-
if "```" in sql:
|
| 292 |
-
sql = re.sub(r"```sql|```", "", sql, flags=re.I).strip()
|
| 293 |
-
# Quote schema identifiers to preserve MixedCase table names
|
| 294 |
-
sql = _quote_schema_identifiers(sql)
|
| 295 |
-
# Quote alias columns (e.g., e.ElementID -> e."ElementID")
|
| 296 |
-
sql = _quote_alias_columns(sql)
|
| 297 |
-
if not is_safe_select(sql):
|
| 298 |
-
raise ValueError("Generated SQL failed safety checks (SELECT-only required).")
|
| 299 |
-
return sql
|
| 300 |
-
|
| 301 |
-
def run_sql(sql: str, limit: int = 200):
|
| 302 |
-
# enforce a hard cap to avoid huge result sets
|
| 303 |
-
sql_wrapped = f"SELECT * FROM ({sql}) AS sub LIMIT {limit}"
|
| 304 |
with engine.begin() as cx:
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
|
|
|
|
|
|
|
|
|
|
| 314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
|
|
|
| 316 |
|
| 317 |
|
| 318 |
-
|
| 319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
|
| 321 |
-
|
| 322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
-
|
| 325 |
-
from app.cleaning.llm import LLM
|
| 326 |
-
from app.cleaning.prompts import SQL_PROMPT_SYSTEM, sql_user_prompt
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
def _strip_code_fences(s: str) -> str:
|
| 330 |
-
s = s.strip()
|
| 331 |
-
s = re.sub(r"^```sql\s*|\s*```$", "", s, flags=re.I | re.M)
|
| 332 |
-
return s.strip("`").strip()
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
EXTRA_GUIDANCE = """
|
| 336 |
-
Requirements:
|
| 337 |
-
- Search across cleaned columns only (use *_clean):
|
| 338 |
-
Types(TypeName_clean, FamilyName_clean), Elements(ElementName_clean),
|
| 339 |
-
Assembly(AssemblyName_clean), Materials(Name_clean), Views(ViewName_clean),
|
| 340 |
-
ModelDetails(ModelName_clean), ModelRoomDetails(RoomName_clean),
|
| 341 |
-
ModelFloorPlanMapping(FloorPlanName_clean), GeometryDataNew(GeometryFileName_clean).
|
| 342 |
-
- Prefer normalized units (e.g., 4 in). Treat 4", 4 inch, 4 inches as 4 in.
|
| 343 |
-
- Match singular/plural (e.g., wall/walls, elbow/elbows) using robust ILIKE patterns.
|
| 344 |
-
- Follow relationships to Types to return the correct TypeID when searching non-Type tables.
|
| 345 |
-
- Final output should be a single SELECT that includes a column aliased exactly as TypeID
|
| 346 |
-
(e.g., SELECT DISTINCT t."TypeID" AS TypeID, ...). Avoid returning other columns.
|
| 347 |
-
"""
|
| 348 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
|
| 350 |
-
|
| 351 |
-
|
|
|
|
| 352 |
|
|
|
|
|
|
|
|
|
|
| 353 |
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
This helps when the LLM emits MixedCase table names without quotes.
|
| 357 |
-
"""
|
| 358 |
-
schema = settings.POSTGRES_SOURCE_SCHEMAS
|
| 359 |
-
# Quote occurrences like normalizeddata.tblTypes -> "normalizeddata"."tblTypes"
|
| 360 |
-
pat = re.compile(rf'(?<!")\b{re.escape(schema)}\.(?!")(\w+)', re.IGNORECASE)
|
| 361 |
-
sql = pat.sub(lambda m: f'"{schema}"."{m.group(1)}"', sql)
|
| 362 |
-
# Also quote public.<identifier> forms
|
| 363 |
-
pat_pub = re.compile(r'(?<!")\bpublic\.(?!")(\w+)', re.IGNORECASE)
|
| 364 |
-
sql = pat_pub.sub(lambda m: f'"public"."{m.group(1)}"', sql)
|
| 365 |
-
return sql
|
| 366 |
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
-
|
| 369 |
-
"""Generate SQL via LLM that returns DISTINCT TypeID for the user question
|
| 370 |
-
and execute it, returning a list of TypeID values.
|
| 371 |
-
"""
|
| 372 |
-
# Build a focused prompt with columns and relations
|
| 373 |
-
catalog = get_catalog_snapshot()
|
| 374 |
-
user = sql_user_prompt(question, catalog_snapshot=catalog)
|
| 375 |
-
user += "\n\n" + EXTRA_GUIDANCE
|
| 376 |
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
with engine.begin() as cx:
|
| 390 |
-
# Favor normalizeddata then public on the search_path for convenience
|
| 391 |
-
try:
|
| 392 |
-
cx.execute(text(
|
| 393 |
-
f"SET LOCAL search_path TO \"{settings.POSTGRES_SOURCE_SCHEMAS}\", " + ",".join(settings.source_schemas)
|
| 394 |
-
))
|
| 395 |
-
except Exception:
|
| 396 |
-
pass
|
| 397 |
-
rows = cx.execute(text(sql)).mappings().all()
|
| 398 |
-
|
| 399 |
-
if not rows:
|
| 400 |
-
return ([], sql)
|
| 401 |
-
|
| 402 |
-
# Find a key resembling TypeID (case-insensitive, underscores allowed)
|
| 403 |
-
keys = list(rows[0].keys())
|
| 404 |
-
|
| 405 |
-
def is_typeid(k: str) -> bool:
|
| 406 |
-
return bool(re.fullmatch(r"(?i)type[_ ]?id", k))
|
| 407 |
-
|
| 408 |
-
cand = None
|
| 409 |
-
for k in keys:
|
| 410 |
-
if is_typeid(k):
|
| 411 |
-
cand = k
|
| 412 |
-
break
|
| 413 |
-
if cand is None:
|
| 414 |
-
for k in keys:
|
| 415 |
-
if k.lower() in ("typeid", "type_id"):
|
| 416 |
-
cand = k
|
| 417 |
-
break
|
| 418 |
-
if cand is None:
|
| 419 |
-
return ([], sql)
|
| 420 |
-
|
| 421 |
-
vals: set[int] = set()
|
| 422 |
-
for r in rows:
|
| 423 |
-
v = r.get(cand)
|
| 424 |
-
if v is None:
|
| 425 |
-
continue
|
| 426 |
-
try:
|
| 427 |
-
vals.add(int(v))
|
| 428 |
-
except Exception:
|
| 429 |
-
try:
|
| 430 |
-
vals.add(int(str(v).strip()))
|
| 431 |
-
except Exception:
|
| 432 |
-
continue
|
| 433 |
-
return (sorted(vals), sql)
|
| 434 |
-
except Exception:
|
| 435 |
-
# Fallback: build a deterministic UNION-based search using only verified joins/columns
|
| 436 |
-
return _fallback_union_search(question)
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
def _fallback_union_search(question: str) -> Tuple[List[int], str]:
|
| 440 |
-
"""Fallback SQL builder that unions TypeIDs discovered via safe, known paths."""
|
| 441 |
-
catalog = get_catalog_snapshot()
|
| 442 |
-
target = settings.POSTGRES_SOURCE_SCHEMAS
|
| 443 |
-
cmap: Dict[str, Dict[str, Set[str]]] = {}
|
| 444 |
-
for r in catalog:
|
| 445 |
-
schema = r["table_schema"]
|
| 446 |
-
table = r["table_name"]
|
| 447 |
-
col = r["column_name"]
|
| 448 |
-
cmap.setdefault(schema, {}).setdefault(table, set()).add(col)
|
| 449 |
-
|
| 450 |
-
def has(table: str, *cols: str, schema: str = target) -> bool:
|
| 451 |
-
return table in cmap.get(schema, {}) and all(c in cmap[schema][table] for c in cols)
|
| 452 |
-
|
| 453 |
-
def normalize_inches(txt: str) -> str:
|
| 454 |
-
t = txt
|
| 455 |
-
t = re.sub(r"(\d+)\s*(?:inches|inch|in|\")\b", r"\1 in", t, flags=re.I)
|
| 456 |
-
return t
|
| 457 |
-
|
| 458 |
-
qn = normalize_inches(question.lower())
|
| 459 |
-
tokens = []
|
| 460 |
-
for tok in re.findall(r"\d+\s+in|[a-zA-Z]+", qn):
|
| 461 |
-
tokens.append(tok.strip())
|
| 462 |
-
alts: Set[str] = set(tokens)
|
| 463 |
-
for t in list(tokens):
|
| 464 |
-
if len(t) > 2 and t.isalpha():
|
| 465 |
-
if t.endswith("s"):
|
| 466 |
-
alts.add(t[:-1])
|
| 467 |
-
else:
|
| 468 |
-
alts.add(t + "s")
|
| 469 |
-
pats = [f"%{t}%" for t in sorted(alts)]
|
| 470 |
-
|
| 471 |
-
def like_all(col: str) -> str:
|
| 472 |
-
return " AND ".join([f"{col} ILIKE :p{i}" for i in range(len(pats))]) if pats else "TRUE"
|
| 473 |
-
|
| 474 |
-
parts: List[str] = []
|
| 475 |
-
|
| 476 |
-
if has("tblTypes", "TypeID", "TypeName_clean"):
|
| 477 |
-
conds = like_all('t."TypeName_clean"')
|
| 478 |
-
parts.append(
|
| 479 |
-
f'SELECT DISTINCT t."TypeID" AS TypeID FROM "{target}"."tblTypes" t WHERE {conds}'
|
| 480 |
-
)
|
| 481 |
-
if has("tblTypes", "TypeID", "FamilyName_clean"):
|
| 482 |
-
conds = like_all('t."FamilyName_clean"')
|
| 483 |
-
parts.append(
|
| 484 |
-
f'SELECT DISTINCT t."TypeID" AS TypeID FROM "{target}"."tblTypes" t WHERE {conds}'
|
| 485 |
-
)
|
| 486 |
|
| 487 |
-
|
| 488 |
-
conds = like_all('e."ElementName_clean"')
|
| 489 |
-
parts.append(
|
| 490 |
-
f'SELECT DISTINCT e."TypeID" AS TypeID FROM "{target}"."tblElements" e WHERE {conds}'
|
| 491 |
-
)
|
| 492 |
|
| 493 |
-
if has("tblTypes", "TypeID", "MaterialID") and has("tblMaterials", "MaterialID", "Name_clean"):
|
| 494 |
-
conds = like_all('m."Name_clean"')
|
| 495 |
-
parts.append(
|
| 496 |
-
f'SELECT DISTINCT t."TypeID" AS TypeID '
|
| 497 |
-
f'FROM "{target}"."tblTypes" t '
|
| 498 |
-
f'JOIN "{target}"."tblMaterials" m ON t."MaterialID" = m."MaterialID" '
|
| 499 |
-
f'WHERE {conds}'
|
| 500 |
-
)
|
| 501 |
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
f'SELECT DISTINCT t."TypeID" AS TypeID '
|
| 506 |
-
f'FROM "{target}"."tblTypes" t '
|
| 507 |
-
f'JOIN "{target}"."tblModelDetails" md ON t."ModelID" = md."ModelID" '
|
| 508 |
-
f'WHERE {conds}'
|
| 509 |
-
)
|
| 510 |
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
f'SELECT DISTINCT t."TypeID" AS TypeID '
|
| 515 |
-
f'FROM "{target}"."tblTypes" t '
|
| 516 |
-
f'JOIN "{target}"."tblViews" v ON t."ModelID" = v."ModelID" '
|
| 517 |
-
f'WHERE {conds}'
|
| 518 |
-
)
|
| 519 |
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
f'SELECT DISTINCT t."TypeID" AS TypeID '
|
| 524 |
-
f'FROM "{target}"."tblTypes" t '
|
| 525 |
-
f'JOIN "{target}"."tblAssembly" a ON t."ModelID" = a."ModelID" '
|
| 526 |
-
f'WHERE {conds}'
|
| 527 |
)
|
|
|
|
| 528 |
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
f'FROM "{target}"."tblTypes" t '
|
| 534 |
-
f'JOIN "{target}"."tblModelRoomDetails" mrd ON t."ModelID" = mrd."ModelID" '
|
| 535 |
-
f'WHERE {conds}'
|
| 536 |
-
)
|
| 537 |
|
| 538 |
-
if has("tblTypes", "TypeID", "ModelID") and has("tblModelFloorPlanMapping", "ModelID", "FloorPlanName_clean"):
|
| 539 |
-
conds = like_all('mfpm."FloorPlanName_clean"')
|
| 540 |
-
parts.append(
|
| 541 |
-
f'SELECT DISTINCT t."TypeID" AS TypeID '
|
| 542 |
-
f'FROM "{target}"."tblTypes" t '
|
| 543 |
-
f'JOIN "{target}"."tblModelFloorPlanMapping" mfpm ON t."ModelID" = mfpm."ModelID" '
|
| 544 |
-
f'WHERE {conds}'
|
| 545 |
-
)
|
| 546 |
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 554 |
)
|
| 555 |
|
| 556 |
-
if not parts:
|
| 557 |
-
return ([], "-- no valid search paths found")
|
| 558 |
-
|
| 559 |
-
sql = "\nUNION\n".join(parts)
|
| 560 |
-
|
| 561 |
-
params = {f"p{i}": pats[i] for i in range(len(pats))}
|
| 562 |
-
with engine.begin() as cx:
|
| 563 |
-
rows = cx.execute(text(sql), params).scalars().all()
|
| 564 |
-
# rows already ints
|
| 565 |
-
out = sorted({int(x) for x in rows if x is not None})
|
| 566 |
-
return (out, sql)
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from typing import Dict, List, Optional
|
| 3 |
+
import sys
|
| 4 |
+
from sqlalchemy import text
|
| 5 |
+
from sqlalchemy.engine import Result
|
| 6 |
+
from app.db import engine
|
| 7 |
from app.config import settings
|
| 8 |
+
from app.cleaning.prompts import CLEAN_PROMPT
|
| 9 |
+
from app.cleaning.llm import LLM
|
| 10 |
|
| 11 |
|
| 12 |
+
"""
|
| 13 |
+
IN-PLACE CLEANING PIPELINE (Original Logic, No Mirroring)
|
| 14 |
+
|
| 15 |
+
- Reads from SAME TABLE
|
| 16 |
+
- Writes back into SAME TABLE
|
| 17 |
+
- Adds <col>_clean columns if missing
|
| 18 |
+
- Cleans only up to clean_cap rows (default 20)
|
| 19 |
+
- Preserves original data completely
|
| 20 |
+
- No target schema, no cloned tables, no mirroring
|
| 21 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
MAX_ROWS_PER_TABLE = 20
|
| 24 |
|
| 25 |
|
| 26 |
+
# ----------------------------------------------------
|
| 27 |
+
# ADD <col>_clean columns into SAME TABLE
|
| 28 |
+
# ----------------------------------------------------
|
| 29 |
+
def ensure_clean_columns(schema: str, table: str, culprit_columns: List[str]):
|
| 30 |
+
if not culprit_columns:
|
| 31 |
+
return
|
| 32 |
|
| 33 |
+
with engine.begin() as cx:
|
| 34 |
+
for col in culprit_columns:
|
| 35 |
+
col_clean = f"{col}_clean"
|
| 36 |
+
sql = (
|
| 37 |
+
f'ALTER TABLE "{schema}"."{table}" '
|
| 38 |
+
f'ADD COLUMN IF NOT EXISTS "{col_clean}" TEXT'
|
| 39 |
+
)
|
| 40 |
+
cx.execute(text(sql))
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# ----------------------------------------------------
|
| 44 |
+
# Count rows
|
| 45 |
+
# ----------------------------------------------------
|
| 46 |
+
def _count_source_rows(schema: str, table: str) -> int:
|
| 47 |
+
try:
|
| 48 |
+
with engine.begin() as cx:
|
| 49 |
+
row = cx.execute(
|
| 50 |
+
text(f'SELECT COUNT(*) FROM "{schema}"."{table}"')
|
| 51 |
+
).first()
|
| 52 |
+
return int(row[0])
|
| 53 |
+
except Exception:
|
| 54 |
+
return -1
|
| 55 |
|
| 56 |
|
| 57 |
+
# ----------------------------------------------------
|
| 58 |
+
# Stream rows from SAME TABLE
|
| 59 |
+
# ----------------------------------------------------
|
| 60 |
+
def stream_rows(schema: str, table: str, batch_size=1000):
|
| 61 |
+
limit = ""
|
| 62 |
+
sql = f'SELECT * FROM "{schema}"."{table}"{limit}'
|
| 63 |
|
| 64 |
+
with engine.begin() as cx:
|
| 65 |
+
result: Result = (
|
| 66 |
+
cx.execution_options(stream_results=True)
|
| 67 |
+
.execute(text(sql))
|
| 68 |
+
)
|
| 69 |
|
| 70 |
+
batch = []
|
| 71 |
+
yielded = 0
|
| 72 |
|
| 73 |
+
for row in result.mappings():
|
| 74 |
+
batch.append(dict(row))
|
| 75 |
+
yielded += 1
|
| 76 |
|
| 77 |
+
if len(batch) >= batch_size:
|
| 78 |
+
yield batch
|
| 79 |
+
batch = []
|
| 80 |
|
| 81 |
+
if batch:
|
| 82 |
+
yield batch
|
| 83 |
|
| 84 |
|
| 85 |
+
# ----------------------------------------------------
|
| 86 |
+
# Write back INTO SAME TABLE
|
| 87 |
+
# ----------------------------------------------------
|
| 88 |
+
def write_batch(schema: str, table: str, rows: List[Dict], pk_col: str):
|
| 89 |
+
if not rows:
|
| 90 |
+
return
|
| 91 |
+
print(f"rows : {rows}")
|
| 92 |
+
for r in rows:
|
| 93 |
+
# json encode dict/list so SQL can accept it
|
| 94 |
+
for k, v in list(r.items()):
|
| 95 |
+
if isinstance(v, (dict, list)):
|
| 96 |
+
r[k] = json.dumps(v)
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
with engine.begin() as cx:
|
| 99 |
+
for r in rows:
|
| 100 |
+
pk_val = r[pk_col]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
set_list = ", ".join(
|
| 103 |
+
f'"{c}" = :{c}' for c in r.keys() if c != pk_col
|
| 104 |
+
)
|
| 105 |
|
| 106 |
+
sql = (
|
| 107 |
+
f'UPDATE "{schema}"."{table}" '
|
| 108 |
+
f'SET {set_list} '
|
| 109 |
+
f'WHERE "{pk_col}" = :{pk_col}'
|
| 110 |
+
)
|
| 111 |
|
| 112 |
+
cx.execute(text(sql), r)
|
| 113 |
|
| 114 |
|
| 115 |
+
# ----------------------------------------------------
|
| 116 |
+
# LLM clean
|
| 117 |
+
# ----------------------------------------------------
|
| 118 |
+
def clean_value(llm: LLM, value: str) -> str:
|
| 119 |
+
if not llm.enabled():
|
| 120 |
+
return value
|
| 121 |
|
| 122 |
+
out = llm.clean_text(
|
| 123 |
+
value,
|
| 124 |
+
system=CLEAN_PROMPT,
|
| 125 |
+
instruction="Clean the following product text."
|
| 126 |
+
)
|
| 127 |
+
return out.strip() or value
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# ----------------------------------------------------
|
| 131 |
+
# MAIN FUNCTION β identical logic to old pipeline
|
| 132 |
+
# ----------------------------------------------------
|
| 133 |
+
def run_clean_table(
|
| 134 |
+
schema: str,
|
| 135 |
+
table: str,
|
| 136 |
+
culprit_columns: List[str],
|
| 137 |
+
batch_size: int = 1000,
|
| 138 |
+
clean_cap: Optional[int] = None,
|
| 139 |
+
primary_key: Optional[str] = None,
|
| 140 |
+
clean_all: bool = False,
|
| 141 |
+
):
|
| 142 |
+
if not primary_key:
|
| 143 |
+
raise ValueError("primary_key required")
|
| 144 |
|
| 145 |
+
llm = LLM()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
# Ensure <col>_clean exists
|
| 148 |
+
ensure_clean_columns(schema, table, culprit_columns) ## Adding cleaned columns if missing
|
| 149 |
+
total_rows = _count_source_rows(schema, table) ## Count total rows in the table
|
| 150 |
+
|
| 151 |
+
cap = None if clean_all else (clean_cap or MAX_ROWS_PER_TABLE)
|
| 152 |
+
|
| 153 |
+
print(f"\nβ In-place cleaning {schema}.{table} (rows={total_rows}, cap={cap})")
|
| 154 |
+
sys.stdout.flush()
|
| 155 |
+
|
| 156 |
+
# Skip rows already cleaned
|
| 157 |
+
skip_pks = set()
|
| 158 |
+
if culprit_columns:
|
| 159 |
+
cond = " AND ".join([f'"{c}_clean" IS NOT NULL' for c in culprit_columns])
|
| 160 |
+
sql = (
|
| 161 |
+
f'SELECT "{primary_key}" FROM "{schema}"."{table}" '
|
| 162 |
+
f'WHERE {cond}'
|
| 163 |
+
)
|
| 164 |
+
try:
|
| 165 |
+
with engine.begin() as cx:
|
| 166 |
+
rows = cx.execute(text(sql)).fetchall()
|
| 167 |
+
skip_pks = {r[0] for r in rows}
|
| 168 |
+
except:
|
| 169 |
+
skip_pks = set()
|
| 170 |
|
| 171 |
+
rows_cleaned = 0
|
| 172 |
+
rows_processed = 0
|
| 173 |
+
skipped_existing = 0
|
| 174 |
|
| 175 |
+
# STREAM + CLEAN + UPDATE SAME TABLE
|
| 176 |
+
for rows in stream_rows(schema, table, batch_size=batch_size):
|
| 177 |
+
out_rows = []
|
| 178 |
|
| 179 |
+
for r in rows:
|
| 180 |
+
pk = r.get(primary_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
if pk in skip_pks:
|
| 183 |
+
skipped_existing += 1
|
| 184 |
+
continue
|
| 185 |
|
| 186 |
+
will_clean = (cap is None) or (rows_cleaned < cap)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
for col in culprit_columns:
|
| 189 |
+
original = r.get(col)
|
| 190 |
+
original_s = None if original is None else str(original)
|
| 191 |
|
| 192 |
+
if will_clean:
|
| 193 |
+
cleaned = clean_value(llm, original_s) if original_s else None
|
| 194 |
+
r[f"{col}_clean"] = cleaned
|
| 195 |
+
else:
|
| 196 |
+
r[f"{col}_clean"] = None
|
| 197 |
|
| 198 |
+
if will_clean:
|
| 199 |
+
rows_cleaned += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
out_rows.append(r)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
# Write back to same table
|
| 205 |
+
write_batch(schema, table, out_rows, pk_col=primary_key)
|
| 206 |
+
rows_processed += len(out_rows)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
+
# progress
|
| 209 |
+
target = cap or total_rows
|
| 210 |
+
pct = int(min(rows_cleaned, target) * 100 / target)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
+
print(
|
| 213 |
+
f" {table}: cleaned {rows_cleaned}/{target} ({pct}%) "
|
| 214 |
+
f"| updated rows: {rows_processed} | skipped: {skipped_existing}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
)
|
| 216 |
+
sys.stdout.flush()
|
| 217 |
|
| 218 |
+
print(
|
| 219 |
+
f"β DONE: {schema}.{table} in-place cleaned "
|
| 220 |
+
f"(cleaned={rows_cleaned}, skipped={skipped_existing})\n"
|
| 221 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
+
# ----------------------------------------------------
|
| 225 |
+
# YAML Loader
|
| 226 |
+
# ----------------------------------------------------
|
| 227 |
+
def run_cleaning_from_yaml(
|
| 228 |
+
yaml_path: str,
|
| 229 |
+
batch_size: int = 1000,
|
| 230 |
+
clean_cap: Optional[int] = None,
|
| 231 |
+
clean_all: bool = False,
|
| 232 |
+
):
|
| 233 |
+
import yaml
|
| 234 |
+
|
| 235 |
+
with open(yaml_path, "r") as f:
|
| 236 |
+
cfg = yaml.safe_load(f)
|
| 237 |
+
|
| 238 |
+
for t in cfg.get("tables", []):
|
| 239 |
+
run_clean_table(
|
| 240 |
+
schema=t["schema"], ## public
|
| 241 |
+
table=t["name"], ## test_products
|
| 242 |
+
culprit_columns=t["culprit_columns"], ## ["title", "description"]
|
| 243 |
+
batch_size=batch_size, ## 30
|
| 244 |
+
primary_key=t["primary_key"], ## id
|
| 245 |
+
clean_cap=clean_cap, ## 10
|
| 246 |
+
clean_all=clean_all,## True/False
|
| 247 |
)
|
| 248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|