# LitGPT High-level Python API This is a work-in-progress draft for a high-level LitGPT Python API.   ## Model loading & saving The `LLM.load` command loads an `llm` object, which contains both the model object (a PyTorch module) and a preprocessor. ```python from litgpt import LLM llm = LLM.load( model="url | local_path", # high-level user only needs to care about those: memory_reduction="none | medium | strong" # advanced options for technical users: source="hf | local | other" quantize="bnb.nf4", precision="bf16-true", device=""auto | cuda | cpu", ) ``` Here, - `llm.model` contains the PyTorch Module - and `llm.preprocessor.tokenizer` contains the tokenizer The `llm.save` command saves the model weights, tokenizer, and configuration information. ```python llm.save(checkpoint_dir, format="lightning | ollama | hf") ```   ## Inference / Chat ``` response = llm.generate( prompt="What do Llamas eat?", temperature=0.1, top_p=0.8, ... ) ```   ## Dataset The `llm.prepare_dataset` command prepares a dataset for training. ``` llm.download_dataset( URL, ... ) ``` ``` dataset = llm.prepare_dataset( path, task="pretrain | instruction_finetune", test_portion=0.1, ... ) ```   ## Training ```python llm.instruction_finetune( config=None, dataset=dataset, max_iter=10, method="full | lora | adapter | adapter_v2" ) ``` ```python llm.pretrain(config=None, dataset=dataset, max_iter=10, ...) ```   ## Serving ```python llm.serve(port=8000) ``` Then in another Python session: ```python import requests, json response = requests.post( "http://127.0.0.1:8000/predict", json={"prompt": "Fix typos in the following sentence: Example input"} ) print(response.json()["output"]) ```