|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
|
|
import pytest |
|
|
import torch |
|
|
|
|
|
from litgpt.data.base import SFTDataset, get_sft_collate_fn |
|
|
from litgpt.prompts import PromptStyle |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("mask_prompt", [True, False]) |
|
|
@pytest.mark.parametrize("ignore_index", [-1, -100]) |
|
|
@pytest.mark.parametrize("max_seq_length", [1000, 5, -1]) |
|
|
def test_sft_dataset(max_seq_length, ignore_index, mask_prompt, mock_tokenizer): |
|
|
class Style(PromptStyle): |
|
|
def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs) -> str: |
|
|
return f"In: {prompt} Out:" |
|
|
|
|
|
i = ignore_index |
|
|
data = [{"instruction": "Foo", "output": "Bar"}, {"instruction": "Boo", "output": "Ahh"}] |
|
|
|
|
|
dataset = SFTDataset( |
|
|
data=data, |
|
|
tokenizer=mock_tokenizer, |
|
|
prompt_style=Style(), |
|
|
mask_prompt=mask_prompt, |
|
|
ignore_index=ignore_index, |
|
|
max_seq_length=max_seq_length, |
|
|
) |
|
|
assert len(dataset) == len(data) |
|
|
|
|
|
expected_input_ids = torch.tensor([73, 110, 58, 32, 70, 111, 111, 32, 79, 117, 116, 58, 66, 97, 114, 1]) |
|
|
|
|
|
expected_labels = ( |
|
|
torch.tensor([i, i, i, i, i, i, i, i, i, i, i, i, 66, 97, 114, 1]) if mask_prompt else expected_input_ids |
|
|
) |
|
|
|
|
|
if max_seq_length == -1: |
|
|
assert torch.equal(dataset[0]["input_ids"], expected_input_ids) |
|
|
assert torch.equal(dataset[0]["labels"], expected_labels) |
|
|
else: |
|
|
assert torch.equal(dataset[0]["input_ids"], expected_input_ids[:max_seq_length]) |
|
|
assert torch.equal(dataset[0]["labels"], expected_labels[:max_seq_length]) |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("ignore_index", [-1, -100]) |
|
|
@pytest.mark.parametrize("pad_id", [0, 100]) |
|
|
def test_sft_collate_fn_padding(pad_id, ignore_index): |
|
|
collate = get_sft_collate_fn(pad_id=pad_id, ignore_index=ignore_index) |
|
|
samples = [ |
|
|
{ |
|
|
"input_ids": torch.tensor([1, 2, 3]), |
|
|
"labels": torch.tensor([10, 20, 30]), |
|
|
"token_counts": {"raw": 3, "raw_plus_prompt_template": 25}, |
|
|
}, |
|
|
{ |
|
|
"input_ids": torch.tensor([4, 5, 6, 7, 8]), |
|
|
"labels": torch.tensor([40, 50, 60, 70, 80]), |
|
|
"token_counts": {"raw": 5, "raw_plus_prompt_template": 27}, |
|
|
}, |
|
|
] |
|
|
expected = { |
|
|
"input_ids": torch.tensor([[1, 2, 3, pad_id, pad_id], [4, 5, 6, 7, 8]]), |
|
|
"labels": torch.tensor([[10, 20, 30, ignore_index, ignore_index], [40, 50, 60, 70, 80]]), |
|
|
"token_counts": {"raw": torch.tensor([[3], [5]]), "raw_plus_prompt_template": torch.tensor([[25], [27]])}, |
|
|
} |
|
|
batch = collate(samples) |
|
|
assert all(torch.equal(batch[k], expected[k]) for k in ("input_ids", "labels")) |
|
|
for key in ("raw", "raw_plus_prompt_template"): |
|
|
assert torch.equal(batch["token_counts"][key], expected["token_counts"][key]), f"Token count mismatch for {key}" |
|
|
|
|
|
|
|
|
def test_sft_collate_fn_truncation(): |
|
|
collate = get_sft_collate_fn(max_seq_length=2) |
|
|
samples = [ |
|
|
{ |
|
|
"input_ids": torch.tensor([1, 2, 3]), |
|
|
"labels": torch.tensor([10, 20, 30]), |
|
|
"token_counts": {"raw": 3, "raw_plus_prompt_template": 25}, |
|
|
}, |
|
|
{ |
|
|
"input_ids": torch.tensor([4, 5, 6, 7, 8]), |
|
|
"labels": torch.tensor([40, 50, 60, 70, 80]), |
|
|
"token_counts": {"raw": 5, "raw_plus_prompt_template": 27}, |
|
|
}, |
|
|
] |
|
|
expected = { |
|
|
"input_ids": torch.tensor([[1, 2], [4, 5]]), |
|
|
"labels": torch.tensor([[10, 20], [40, 50]]), |
|
|
"token_counts": {"raw": torch.tensor([[3], [5]]), "raw_plus_prompt_template": torch.tensor([[25], [27]])}, |
|
|
} |
|
|
batch = collate(samples) |
|
|
assert all(torch.equal(batch[k], expected[k]) for k in ("input_ids", "labels")) |
|
|
for key in ("raw", "raw_plus_prompt_template"): |
|
|
assert torch.equal(batch["token_counts"][key], expected["token_counts"][key]), f"Token count mismatch for {key}" |
|
|
|