STBench / code /config.py
LwbXc
code and datasets
b754bbe
from dataclasses import dataclass, field
from typing import Optional
from result_parser import yes_or_no, find_option_number, anomaly_detection, trajectory_prediction, trajectory_classification
result_parsers = {
"poi_category_recognition": find_option_number,
"poi_identification": yes_or_no,
"urban_region_function_recognition": find_option_number,
"administrative_region_determination": find_option_number,
"point_trajectory": find_option_number,
"point_region": find_option_number,
"trajectory_region": find_option_number,
"trajectory_identification": yes_or_no,
"trajectory_trajectory": find_option_number,
"direction_determination": find_option_number,
"trajectory_anomaly_detection": anomaly_detection,
"trajectory_classification": trajectory_classification,
"trajectory_prediction": trajectory_prediction
}
max_tokens = {
"poi_category_recognition": 15,
"poi_identification": 15,
"urban_region_function_recognition": 15,
"administrative_region_determination": 15,
"point_trajectory": 15,
"point_region": 15,
"trajectory_region": 15,
"trajectory_identification": 15,
"trajectory_trajectory": 15,
"direction_determination": 15,
"trajectory_anomaly_detection": 15,
"trajectory_classification": 15,
"trajectory_prediction": 50
}
dataset_files = {
"poi_category_recognition": ["../datasets/basic/knowledge_comprehension/poi_category_recognition.jsonl"],
"poi_identification": ["../datasets/basic/knowledge_comprehension/poi_identification.jsonl"],
"urban_region_function_recognition": ["../datasets/basic/knowledge_comprehension/urban_region_function_recognition.jsonl"],
"administrative_region_determination": ["../datasets/basic/knowledge_comprehension/administrative_region_determination.jsonl"],
"point_trajectory": ["../datasets/basic/spatiotemporal_reasoning/point_trajectory.jsonl"],
"point_region": ["../datasets/basic/spatiotemporal_reasoning/point_region_2regions.jsonl",
"../datasets/basic/spatiotemporal_reasoning/point_region_3regions.jsonl",
"../datasets/basic/spatiotemporal_reasoning/point_region_4regions.jsonl",
"../datasets/basic/spatiotemporal_reasoning/point_region_5regions.jsonl"],
"trajectory_region": ["../datasets/basic/spatiotemporal_reasoning/trajectory_region_length2.jsonl",
"../datasets/basic/spatiotemporal_reasoning/trajectory_region_length4.jsonl",
"../datasets/basic/spatiotemporal_reasoning/trajectory_region_length6.jsonl",
"../datasets/basic/spatiotemporal_reasoning/trajectory_region_length8.jsonl",
"../datasets/basic/spatiotemporal_reasoning/trajectory_region_length10.jsonl"],
"trajectory_identification": ["../datasets/basic/spatiotemporal_reasoning/trajectory_identification_downsampling.jsonl",
"../datasets/basic/spatiotemporal_reasoning/trajectory_identification_staggered_sampling.jsonl",
"../datasets/basic/spatiotemporal_reasoning/trajectory_identification_spatial_offset.jsonl",
"../datasets/basic/spatiotemporal_reasoning/trajectory_identification_temporal_offset.jsonl"],
"trajectory_trajectory": ["../datasets/basic/accurate_calculation/trajectory_trajectory.jsonl"],
"direction_determination": ["../datasets/basic/accurate_calculation/direction_determination.jsonl"],
"trajectory_anomaly_detection": ["../datasets/basic/downstream_applications/trajectory_anomaly_detection_abnormal.jsonl",
"../datasets/basic/downstream_applications/trajectory_anomaly_detection_normal.jsonl"],
"trajectory_classification": ["../datasets/basic/downstream_applications/trajectory_classification.jsonl"],
"trajectory_prediction": ["../datasets/basic/downstream_applications/trajectory_prediction.jsonl"]
}
icl_files = {
"poi_identification": "../datasets/icl/poi_identification.jsonl",
"trajectory_region": "../datasets/icl/trajectory_region.jsonl",
"trajectory_trajectory": "../datasets/icl/trajectory_trajectory.jsonl",
"direction_determination": "../datasets/icl/direction_determination.jsonl",
"trajectory_anomaly_detection": "../datasets/icl/trajectory_anomaly_detection.jsonl",
"trajectory_prediction": "../datasets/icl/trajectory_prediction.jsonl"
}
cot_files = {
"urban_region_function_recognition": "../datasets/cot/urban_region_function_recognition.jsonl",
"trajectory_region": "../datasets/cot/trajectory_region.jsonl",
"trajectory_trajectory": "../datasets/cot/trajectory_trajectory.jsonl",
"trajectory_classification": "../datasets/cot/trajectory_classification.jsonl"
}
sft_files = {
"administrative_region_determination": {
"train": "../datasets/sft/administrative_region_determination_train.jsonl",
"valid": "../datasets/sft/administrative_region_determination_valid.jsonl"
},
"direction_determination": {
"train": "../datasets/sft/direction_determination_train.jsonl",
"valid": "../datasets/sft/direction_determination_valid.jsonl"
},
"trajectory_anomaly_detection":{
"train": "../datasets/sft/trajectory_anomaly_detection_train.jsonl",
"valid": "../datasets/sft/trajectory_anomaly_detection_valid.jsonl"
},
"trajectory_prediction": {
"train": "../datasets/sft/trajectory_prediction_train.jsonl",
"valid": "../datasets/sft/trajectory_prediction_valid.jsonl"
},
"trajectory_region": {
"train": "../datasets/sft/trajectory_region_train.jsonl",
"valid": "../datasets/sft/trajectory_region_valid.jsonl"
},
"trajectory_trajectory": {
"train": "../datasets/sft/trajectory_trajectory_train.jsonl",
"valid": "../datasets/sft/trajectory_trajectory_valid.jsonl"
}
}
@dataclass
class ScriptArguments:
"""
These arguments vary depending on how many GPUs you have, what their capacity and features are, and what size model you want to train.
"""
per_device_train_batch_size: Optional[int] = field(default=4)
per_device_eval_batch_size: Optional[int] = field(default=1)
gradient_accumulation_steps: Optional[int] = field(default=4)
learning_rate: Optional[float] = field(default=2e-4)
max_grad_norm: Optional[float] = field(default=0.3)
weight_decay: Optional[int] = field(default=0.001)
lora_alpha: Optional[int] = field(default=16)
lora_dropout: Optional[float] = field(default=0.1)
lora_r: Optional[int] = field(default=8)
max_seq_length: Optional[int] = field(default=2048)
model_name: Optional[str] = field(
default=None,
metadata={
"help": "The model that you want to train from the Hugging Face hub. E.g. gpt2, gpt2-xl, bert, etc."
}
)
dataset_name: Optional[str] = field(
default="stingning/ultrachat",
metadata={"help": "The preference dataset to use."},
)
fp16: Optional[bool] = field(
default=False,
metadata={"help": "Enables fp16 training."},
)
bf16: Optional[bool] = field(
default=False,
metadata={"help": "Enables bf16 training."},
)
packing: Optional[bool] = field(
default=True,
metadata={"help": "Use packing dataset creating."},
)
gradient_checkpointing: Optional[bool] = field(
default=True,
metadata={"help": "Enables gradient checkpointing."},
)
use_flash_attention_2: Optional[bool] = field(
default=False,
metadata={"help": "Enables Flash Attention 2."},
)
optim: Optional[str] = field(
default="paged_adamw_32bit",
metadata={"help": "The optimizer to use."},
)
lr_scheduler_type: str = field(
default="constant",
metadata={"help": "Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis"},
)
max_steps: int = field(default=1000, metadata={"help": "How many optimizer update steps to take"})
warmup_ratio: float = field(default=0.03, metadata={"help": "Fraction of steps to do a warmup for"})
save_steps: int = field(default=100, metadata={"help": "Save checkpoint every X updates steps."})
logging_steps: int = field(default=10, metadata={"help": "Log every X updates steps."})
output_dir: str = field(
default="./results",
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
)