# RoboInter-Data: LeRobot v2.1 Format (Actions + Annotations + Videos) The primary data format of [RoboInter-Data](https://huggingface.co/datasets/InternRobotics/RoboInter-Data). Contains robot **actions**, camera **observations**, and rich **intermediate representation annotations** in [LeRobot v2.1](https://github.com/huggingface/lerobot) format (parquet + MP4 videos), ready for policy training. Especially, we calculate the delta EEF (gripper) action of Droid (instead of the joint velocity or the origin cartesian action of the base). | Sub-dataset | Source | Robot | Episodes | Frames | Tasks | Image Size | Raw Image Size | |-------------|--------|-------|----------|--------|-------|------------|-------| | `lerobot_droid_anno` | [DROID](https://droid-dataset.github.io/) | Franka + Robotiq | 152,986 | 46,259,014 | 43,026 | 320 x 180 | 640 x 360 | | `lerobot_rh20t_anno` | [RH20T](https://rh20t.github.io/) | Multiple | 82,894 | 40,755,632 | 146 | 320 x 180 | 640 x 360 | Both datasets share `fps=10`, `chunks_size=1000`, and the same annotation schema. ## Directory Layout ``` lerobot_droid_anno/ (or lerobot_rh20t_anno/) ├── meta/ │ ├── info.json # Dataset metadata (fps, features, shapes, etc.) │ ├── episodes.jsonl # Per-episode info (one JSON per line) │ ├── episodes_stats.jsonl # Per-episode statistics │ └── tasks.jsonl # Task/instruction mapping ├── data/ │ └── chunk-{NNN}/ # Parquet data chunks (1,000 episodes per chunk) │ ├── episode_000000.parquet │ ├── episode_000001.parquet │ └── ... └── videos/ └── chunk-{NNN}/ ├── observation.images.primary/ │ └── episode_{NNNNNN}.mp4 └── observation.images.wrist/ └── episode_{NNNNNN}.mp4 ``` --- ## Data Fields ### Core Fields (Shared by DROID & RH20T) | Field | Shape | Type | Description | |-------|-------|------|-------------| | `action` | (7,) | float64 | Delta EEF action: [delta_x, delta_y, delta_z, delta_rx, delta_ry, delta_rz, gripper_command] | | `state` | (7,) | float64 | EEF state: [x, y, z, rx, ry, rz, gripper_state] | | `observation.images.primary` | (180, 320, 3) | video (H.264) | Primary camera RGB video | | `observation.images.wrist` | (180, 320, 3) | video (H.264) | Wrist camera RGB video | ### Metadata Fields (Shared) | Field | Type | Description | |-------|------|-------------| | `episode_name` | string | Episode unique identifier, e.g. `"3072_exterior_image_1_left"` | | `camera_view` | string | Camera perspective, e.g. `"exterior_image_1_left"` | | `task` | string | Task language description (via `task_index` -> `tasks.jsonl`) | | `episode_index` | int64 | Episode index in dataset | | `frame_index` | int64 | Frame index within episode | | `timestamp` | float32 | Timestamp in seconds (`frame_index / fps`) | | `index` | int64 | Global frame index across all episodes | | `task_index` | int64 | Index into `tasks.jsonl` | --- ### Other Information Fields — DROID Only `lerobot_droid_anno` contains the following additional fields from the original DROID dataset: | Field | Shape | Type | Description | |-------|-------|------|-------------| | `other_information.language_instruction_2` | (1,) | string | Alternative language instruction (source 2) | | `other_information.language_instruction_3` | (1,) | string | Alternative language instruction (source 3) | | `other_information.action_delta_tcp_pose` | (7,) | float64 | Delta TCP pose action: [dx, dy, dz, drx, dry, drz, gripper] | | `other_information.action_delta_wrist_pose` | (7,) | float64 | Delta wrist pose action: [dx, dy, dz, drx, dry, drz, gripper] | | `other_information.action_tcp_pose` | (7,) | float64 | Absolute TCP pose: [x, y, z, rx, ry, rz, gripper] | | `other_information.action_wrist_pose` | (7,) | float64 | Absolute wrist pose: [x, y, z, rx, ry, rz, gripper] | | `other_information.action_gripper_velocity` | (1,) | float64 | Gripper velocity | | `other_information.action_joint_position` | (7,) | float64 | Joint position action: [j1..j7] | | `other_information.action_joint_velocity` | (7,) | float64 | Joint velocity action: [j1..j7] | | `other_information.action_cartesian_velocity` | (6,) | float64 | Cartesian velocity: [vx, vy, vz, wx, wy, wz] | | `other_information.observation_joint_position` | (7,) | float64 | Observed joint positions: [j1..j7] | | `other_information.observation_gripper_position` | (1,) | float64 | Observed gripper position | | `other_information.observation_gripper_open_state` | (1,) | float64 | Gripper open state | | `other_information.observation_gripper_pose6d` | (6,) | float64 | Gripper 6D pose: [x, y, z, rx, ry, rz] | | `other_information.observation_tcp_pose6d` | (6,) | float64 | TCP 6D pose: [x, y, z, rx, ry, rz] | | `other_information.is_first` | (1,) | bool | First frame flag | | `other_information.is_last` | (1,) | bool | Last frame flag | | `other_information.is_terminal` | (1,) | bool | Terminal state flag | ### Other Information Fields — RH20T Only `lerobot_rh20t_anno` contains the following additional fields from the original RH20T dataset: | Field | Shape | Type | Description | |-------|-------|------|-------------| | `other_information.action_delta_tcp_pose` | (7,) | float64 | Delta TCP pose action: [dx, dy, dz, drx, dry, drz, gripper] | | `other_information.action_tcp_pose` | (7,) | float64 | Absolute TCP pose: [x, y, z, rx, ry, rz, gripper] | | `other_information.gripper_command` | (1,) | float64 | Gripper command | | `other_information.observation_joint_position` | (14,) | float64 | Observed joint positions: [j1..j14] | | `other_information.observation_gripper_open_state` | (1,) | float64 | Gripper open state | | `other_information.observation_gripper_pose6d` | (6,) | float64 | Gripper 6D pose: [x, y, z, rx, ry, rz] | | `other_information.tcp_camera` | (7,) | float64 | TCP in camera frame: [x, y, z, qx, qy, qz, qw] | | `other_information.tcp_base` | (7,) | float64 | TCP in base frame: [x, y, z, qx, qy, qz, qw] | | `other_information.gripper` | (1,) | string | Gripper metadata (JSON) | | `other_information.is_first` | (1,) | bool | First frame flag | | `other_information.is_last` | (1,) | bool | Last frame flag | | `other_information.is_terminal` | (1,) | bool | Terminal state flag | > **Key difference:** DROID has 7-DoF joint positions and richer action representations (wrist pose, joint/cartesian velocities). RH20T has 14-DoF joint positions, TCP transforms in camera/base frames, and gripper metadata JSON. --- ### Annotation Fields (Shared by DROID & RH20T) All annotation fields are prefixed with `annotation.` and stored as JSON strings. Empty string `""` means no annotation is available for that frame. | Field | Format | Description | |-------|--------|-------------| | `annotation.time_clip` | `[[start, end], ...]` | Subtask temporal segments (frame ranges) | | `annotation.instruction_add` | string | Structured task language instruction | | `annotation.substask` | string | Current subtask description | | `annotation.primitive_skill` | string | Primitive skill label (pick, place, push, twist, etc.) | | `annotation.segmentation` | string | Segmentation reference (path) | | `annotation.object_box` | `[[x1, y1], [x2, y2]]` | Manipulated object bounding box | | `annotation.placement_proposal` | `[[x1, y1], [x2, y2]]` | Target placement bounding box | | `annotation.trace` | `[[x, y], ...]` | Future 10-frame gripper trajectory waypoints | | `annotation.gripper_box` | `[[x1, y1], [x2, y2]]` | Gripper bounding box | | `annotation.contact_frame` | int / -1 | Frame index when gripper contacts object (-1 = past contact) | | `annotation.state_affordance` | `[x, y, z, rx, ry, rz]` | 6D EEF state at contact frame | | `annotation.affordance_box` | `[[x1, y1], [x2, y2]]` | Gripper bounding box at contact frame | | `annotation.contact_points` | `[x, y]` | Contact point in pixel coordinates | | `annotation.origin_shape` | `[h, w]` | Original image resolution for coordinate reference | #### Bounding Box Format All bounding boxes use pixel coordinates with origin at top-left: ```json [[x1, y1], [x2, y2]] // [top-left, bottom-right] ``` #### Trace Format 10 future waypoints for gripper trajectory prediction: ```json [[110, 66], [112, 68], [115, 70], [118, 72], [120, 75], [122, 78], [125, 80], [128, 82], [130, 85], [132, 88]] ``` --- ### Q_Annotation Fields (Quality Indicators, Shared) Each annotation has a corresponding quality indicator prefixed with `Q_annotation.`: | Field | Values | Description | |-------|--------|-------------| | `Q_annotation.instruction_add` | `"Primary"` / `"Secondary"` / `""` | Instruction quality | | `Q_annotation.substask` | `"Primary"` / `"Secondary"` / `""` | Subtask quality | | `Q_annotation.primitive_skill` | `"Primary"` / `"Secondary"` / `""` | Primitive skill quality | | `Q_annotation.segmentation` | `"Primary"` / `"Secondary"` / `""` | Segmentation quality | | `Q_annotation.object_box` | `"Primary"` / `"Secondary"` / `""` | Object box quality | | `Q_annotation.placement_proposal` | `"Primary"` / `"Secondary"` / `""` | Placement proposal quality | | `Q_annotation.trace` | `"Primary"` / `"Secondary"` / `""` | Trace quality | | `Q_annotation.gripper_box` | `"Primary"` / `"Secondary"` / `""` | Gripper box quality | | `Q_annotation.contact_frame` | `"Primary"` / `"Secondary"` / `""` | Contact frame quality | | `Q_annotation.state_affordance` | `"Primary"` / `"Secondary"` / `""` | State affordance quality | | `Q_annotation.affordance_box` | `"Primary"` / `"Secondary"` / `""` | Affordance box quality | | `Q_annotation.contact_points` | `"Primary"` / `"Secondary"` / `""` | Contact points quality | - **Primary**: High-confidence annotation - **Secondary**: Acceptable quality, may have minor errors - **""** (empty): No annotation available --- ## Quick Start The dataloader code is at [RoboInterData/lerobot_dataloader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lerobot_dataloader). ### Installation ```bash pip install numpy torch pyarrow av opencv-python ``` ### Basic Usage ```python from lerobot_dataloader import create_dataloader dataloader = create_dataloader( "path/to/lerobot_droid_anno", batch_size=32, action_horizon=16, ) for batch in dataloader: images = batch["observation.images.primary"] # (B, H, W, 3) actions = batch["action"] # (B, 16, 7) trace = batch["annotation.trace"] # Parsed JSON lists skill = batch["annotation.primitive_skill"] # List of strings break ``` ### Multiple Datasets (DROID + RH20T) ```python dataloader = create_dataloader( [ "path/to/lerobot_droid_anno", "path/to/lerobot_rh20t_anno", ], batch_size=32, action_horizon=16, ) for batch in dataloader: print(batch["dataset_name"]) # Source dataset identifier break ``` ### Data Filtering #### Frame Range Filtering Remove idle frames at episode start/end using `range_nop.json`: ```python dataloader = create_dataloader( "path/to/lerobot_droid_anno", range_nop_path="path/to/range_nop.json", ) ``` Format of `range_nop.json`: ```json { "3072_exterior_image_1_left": [12, 217, 206] } ``` `[start_frame, end_frame, valid_length]` — frames outside this range are idle/stationary. #### Q_Annotation Filtering Select episodes by annotation quality: ```python from lerobot_dataloader import create_dataloader, QAnnotationFilter # Only Primary quality dataloader = create_dataloader( "path/to/lerobot_droid_anno", q_filters=[ QAnnotationFilter("Q_annotation.instruction_add", ["Primary"]), QAnnotationFilter("Q_annotation.gripper_box", ["Primary"]), ] ) # Any non-empty annotation dataloader = create_dataloader( "path/to/lerobot_droid_anno", q_filters=[ QAnnotationFilter("Q_annotation.trace", ["not_empty"]) ] ) ``` #### Combined Filtering ```python from lerobot_dataloader import FilterConfig, QAnnotationFilter config = FilterConfig( range_nop_path="path/to/range_nop.json", q_filters=[ QAnnotationFilter("Q_annotation.trace", ["Primary", "Secondary"]), ], q_filter_mode="all", # "all" = AND, "any" = OR ) dataloader = create_dataloader("path/to/lerobot_droid_anno", filter_config=config) ``` ### Transforms ```python from lerobot_dataloader import Compose, Normalize, ResizeImages, ToTensorImages, LeRobotDataset from lerobot_dataloader.transforms import compute_stats # Compute normalization stats dataset = LeRobotDataset("path/to/lerobot_droid_anno", load_videos=False) stats = compute_stats(dataset) # Create transform pipeline transform = Compose([ ResizeImages(height=224, width=224), ToTensorImages(), # (H,W,C) uint8 -> (C,H,W) float32 Normalize(stats), ]) dataloader = create_dataloader("path/to/lerobot_droid_anno", transform=transform) ``` ### Direct Dataset Access ```python from lerobot_dataloader import LeRobotDataset from lerobot_dataloader.transforms import ParseAnnotations dataset = LeRobotDataset( "path/to/lerobot_droid_anno", transform=ParseAnnotations(), ) print(f"Total frames: {len(dataset)}") print(f"Total episodes: {dataset.num_episodes}") print(f"FPS: {dataset.fps}") sample = dataset[0] print(f"Action: {sample['action']}") print(f"Object box: {sample['annotation.object_box']}") print(f"Skill: {sample['annotation.primitive_skill']}") ``` --- ## Format Conversion The LeRobot v2.1 format was converted from original data + LMDB annotations using: - **DROID**: [convert_droid_to_lerobot_anno_fast.py](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/convert_to_lerobot/convert_droid_to_lerobot_anno_fast.py) - **RH20T**: [convert_rh20t_to_lerobot_anno_fast.py](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/convert_to_lerobot/convert_rh20t_to_lerobot_anno_fast.py) --- ## Related Resources | Resource | Link | |----------|------| | RoboInter-Data (parent dataset) | [HuggingFace](https://huggingface.co/datasets/InternRobotics/RoboInter-Data) | | RoboInter Project | [GitHub](https://github.com/InternRobotics/RoboInter) | | DataLoader Code | [lerobot_dataloader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lerobot_dataloader) | | Conversion Scripts | [convert_to_lerobot](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/convert_to_lerobot) | | Demo Visualizer | [RoboInterData-Demo](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData-Demo) | | DROID Dataset | [droid-dataset.github.io](https://droid-dataset.github.io/) | | RH20T Dataset | [rh20t.github.io](https://rh20t.github.io/) | ## License Please refer to the original dataset licenses for [RoboInter](https://github.com/InternRobotics/RoboInter), [DROID](https://droid-dataset.github.io/), and [RH20T](https://rh20t.github.io/).