import math from functools import partial from os.path import join from typing import Callable, List import h5py import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from neuralop.models import FNO from torch import vmap from torch.distributions import Categorical from pdeinvbench.data.transforms import ( collapse_time_and_channels, expand_time_and_channels, ) from pdeinvbench.data.utils import unnormalize_params from pdeinvbench.losses import get_pde_residual_function from pdeinvbench.models import MLP, ConvHead from pdeinvbench.utils.types import ( PDE, PDE_NUM_CHANNELS, PDE_NUM_SPATIAL, PDE_PARAM_VALUES, PDE_SPATIAL_SIZE, ) class InverseModel(nn.Module): """ Model that predicts the parameters of a PDE given a set of conditioning frames. :param paramnet: Model that predicts the parameters. """ def __init__( self, paramnet: nn.Module, ): super(InverseModel, self).__init__() self.paramnet = paramnet self.pde = paramnet.pde self.param_values = paramnet.param_values self.pde_residual = get_pde_residual_function(self.pde) self.params_to_predict = self.paramnet.params_to_predict self.use_partials = self.paramnet.encoder.use_partials self.dropout = self.paramnet.dropout # Set up data transform and detransform functions self.data_transform = None self.data_detransform = None if PDE_NUM_SPATIAL[self.pde] > 1: self.data_transform = vmap(collapse_time_and_channels) self.data_detransform = vmap( partial( expand_time_and_channels, num_channels=PDE_NUM_CHANNELS[self.pde] ) ) def forward(self, solution_field, true_params, spatial_grid, t, gumbel=False): # get the partial derivatives and true pde residual, and append to the input if needed with torch.no_grad(): # PDE residual function expects time and channel dimensions to be uncollapsed sf = ( solution_field if self.data_transform is None else self.data_detransform(solution_field) ) true_residual, partials = self.pde_residual( sf, true_params, spatial_grid, t, return_partials=True ) if self.use_partials: partials = ( partials if self.data_transform is None else self.data_transform(partials) ) new_solution_field = torch.cat([solution_field, partials], dim=1) else: new_solution_field = solution_field # predict parameters pred_params = self.paramnet(new_solution_field, gumbel=gumbel, t=t) # compute PDE residual with predicted params (replace unpredicted params with true params) combined_params = {**true_params, **pred_params} pred_residual = self.pde_residual(sf, combined_params, spatial_grid, t) return combined_params, pred_residual, true_residual class ParameterNet(nn.Module): """ Model that predicts PDE parameters given conditioning frames. :param params_to_predict: list of strings of parameters to predict. :param pde: enum of the PDE to use for the residual calculation. :param encoder: Encoder model. Can be FNO or e.g ResNet :param downsampler: Convolutional downsampler model. :param mlp_hidden_size: Hidden size of the MLP. :param mlp_layers: Number of layers in the MLP. :param mlp_activation: Activation function in the MLP. :param logspace: Whether to predict the parameters in log space. :param normalize: Whether to normalize the parameters. :param condition_on_time: Whether or not to provide $t$ as input to the encoder :param mlp_type: Alternatively, may be "conv" which denotes pointwise convolution of darcy flow """ def __init__( self, params_to_predict: List[str], pde: PDE, encoder: nn.Module, downsampler: nn.Module, mlp_hidden_size: int, mlp_layers: int, mlp_activation: str, mlp_dropout: float, logspace: bool, normalize: bool, downsample_factor: int, condition_on_time: bool = False, mlp_type: str = "mlp", ): super(ParameterNet, self).__init__() self.encoder = encoder self.downsampler = downsampler self.params_to_predict = params_to_predict self.logspace = logspace self.normalize = normalize self.pde = pde self.input_size = PDE_SPATIAL_SIZE[pde] self.condition_on_time = condition_on_time self.param_values = None self.dropout = mlp_dropout if self.pde != PDE.DarcyFlow2D: self.param_values = { param: torch.tensor(PDE_PARAM_VALUES[pde][param]).to( torch.device(torch.cuda.current_device()) ) for param in params_to_predict } # Consistency checks assert not ( logspace and normalize ), "Cannot use logspace and normalize together." # get the input shape into the MLP by running a dummy forward pass with torch.no_grad(): dummy = torch.randn(1, self.encoder.in_channels, *self.input_size) dummy_time = ( torch.ones(1, self.encoder.__dict__.get("n_past", 1)) if self.condition_on_time else None ) dummy = self.encoder(dummy, t=dummy_time) dummy = self.downsampler(dummy) encoder_out_channels = dummy.shape[1] dummy = torch.flatten(dummy, start_dim=1) mlp_input_size = dummy.shape[1] self.heads: nn.ModuleList # The following calls set the heads if mlp_type == "mlp": self.generate_mlp_heads( mlp_input_size=mlp_input_size, mlp_hidden_size=mlp_hidden_size, mlp_dropout=mlp_dropout, mlp_layers=mlp_layers, mlp_activation=mlp_activation, params_to_predict=self.params_to_predict, ) elif mlp_type == "conv": self.generate_conv_heads( in_dim=encoder_out_channels, hidden_dim=mlp_hidden_size, n_layers=mlp_layers, dropout=mlp_dropout, activation=mlp_activation, params_to_predict=self.params_to_predict, ) def generate_conv_heads( self, in_dim: int, hidden_dim: int, n_layers: int, dropout: float, activation: str, params_to_predict, ): self.heads = nn.ModuleList( [ ConvHead( in_dim=in_dim, hidden_dim=hidden_dim, n_layers=n_layers, dropout=dropout, activation=activation, ) for param in params_to_predict ] ) def generate_mlp_heads( self, mlp_input_size: int, mlp_hidden_size: int, mlp_dropout: float, mlp_layers: int, mlp_activation, params_to_predict, ): self.heads = nn.ModuleList( [ MLP( in_dim=int(mlp_input_size), hidden_size=mlp_hidden_size, dropout=mlp_dropout, out_dim=1, num_layers=mlp_layers, activation=mlp_activation, ) for param in params_to_predict ] ) def forward(self, x, gumbel=False, t=None): if self.condition_on_time: x = self.encoder(x, t=t) else: x = self.encoder(x) x = self.downsampler(x) # We follow different paths depending on the PDE if self.pde == PDE.DarcyFlow2D: preds = [head(x) for head in self.heads] else: x = torch.flatten(x, start_dim=1) # combine output from each head preds = [head(x) for head in self.heads] if self.logspace: preds = [torch.exp(pred) for pred in preds] # convert to a dictionary preds = {k: v for k, v in zip(self.params_to_predict, preds)} if self.normalize: preds = unnormalize_params(preds, self.pde) return preds