import torch from jaxtyping import Float from torch import Tensor, nn def to_binary_mask(x: Float[Tensor, "batch 1 nx ny"]) -> Float[Tensor, "batch 1 nx ny"]: """ converts x into a binary mask using torch exp. """ # return 1 / (1 + torch.exp(-x)) return nn.functional.sigmoid(x) class ConvHead(nn.Module): """ Simple convolution head which uses pointwise convolutions to generate a segmentation map. The segmentation map is binary. All convolutions are done pointwise (kernel size = 1) """ def __init__( self, hidden_dim: int, in_dim: int, n_layers: int, dropout: float, activation: str, out_dim: int = 1, ) -> None: super(ConvHead, self).__init__() activation_fn = None if activation == "relu": activation_fn = nn.ReLU() elif activation == "gelu": activation_fn = nn.GELU() else: raise NotImplementedError( f"Activation function not implemented {activation_fn}" ) layers = [] # Initial layer layers.append(nn.Conv2d(in_dim, hidden_dim, 1)) layers.append(activation_fn) if dropout != 0: layers.append(nn.Dropout(p=dropout)) for _ in range(n_layers): layers.append(nn.Conv2d(hidden_dim, hidden_dim, 1)) layers.append(activation_fn) if dropout != 0: layers.append(nn.Dropout(p=dropout)) # output layer layers.append(nn.Conv2d(hidden_dim, 1, 1)) self.layers = nn.Sequential(*layers) def forward(self, x: Float[Tensor, "batch channel nx ny"]): return to_binary_mask(self.layers(x))