import glob import logging import math import h5py import numpy as np import torch from scipy import signal from torch.utils.data import Dataset from pdeinvbench.data.transforms import collapse_time_and_channels_torch_transform from pdeinvbench.data.utils import extract_params_from_path from pdeinvbench.utils.types import PDE, PDE_NUM_SPATIAL, PDE_TRAJ_LEN class PDE_MultiParam(Dataset): """Data Loader that loads the multiple parameter version of PDE Datasets.""" def __init__( self, data_root: str, pde: PDE, n_past: int, dilation: int, cutoff_first_n_frames: int, train: bool, frac_param_combinations: float = 1, frac_ics_per_param: float = 1, random_sample_param: bool = True, downsample_factor: int = 0, every_nth_window: int = 1, window_start_percent: float = 0.0, window_end_percent: float = 1.0, ): """ Args: data_root: path containing the h5 files for the current data split pde: name of the PDE system - one of the enum values. n_past: number of conditioning frames dilation: frequency at which to subsample the ground truth trajectories in the time dimension cutoff_first_n_frames: number of initial frames to cutoff in each trajectory (may want to do this e.g. if initial PDE residuals are very high) train: if training dataloader, windows are randomly sampled from each trajecory, if non-training dataloader we loop through all non-overlapping windows frac_param_combinations: fraction of parameter combinations to use. 1 takes all parameters. "0.x" takes x percent of total parameters frac_ics_per_param: fraction of initial conditions per parameter combination to keep. random_sample_param: (bool) If frac_param_combinations < 1, true means we randomly sample params and false means we grab the first n_frac params. Defaults to true. downsample_factor: downsample a solution field spatially by the 'downsample_factor'. eg if downsample_factor=4, sol field spatial size=[128,128] --downsample--> final spatial size = [32,32] every_nth_window: take every nth window from the list of non-over-lapping windows window_start_percent: percent of the way through the trajectory to start the window after cutoff_first_n_frames window_end_percent: percent of the way through the trajectory to end the window """ self.data_root = data_root self.pde = pde self.n_past = n_past self.dilation = dilation self.cutoff_first_n_frames = cutoff_first_n_frames self.frac_param_combinations = frac_param_combinations self.frac_ics_per_param = frac_ics_per_param self.random_sample_param = random_sample_param self.train = train self.every_nth_window = every_nth_window assert ( window_start_percent < window_end_percent ), "window_start_percent must be less than window_end_percent" self.window_start_index = int( (PDE_TRAJ_LEN[self.pde] - self.cutoff_first_n_frames) * window_start_percent + self.cutoff_first_n_frames ) self.window_end_index = int( (PDE_TRAJ_LEN[self.pde] - self.cutoff_first_n_frames) * window_end_percent + self.cutoff_first_n_frames ) self.total_trajectory_length = self.window_end_index - self.window_start_index if self.train: self.num_windows = self.total_trajectory_length - self.n_past - 1 else: self.num_windows = (self.total_trajectory_length) // ( (self.n_past) * self.every_nth_window ) if self.num_windows == 0 and self.every_nth_window > 1: self.every_nth_window = 1 self.num_windows = (self.total_trajectory_length) // ((self.n_past)) # Quick check basically force a non-AR dataloader for darcy flow if self.pde == PDE.DarcyFlow2D: self.num_windows = 1 self.downsample_factor = downsample_factor if PDE_NUM_SPATIAL[pde] == 2: self.transforms = [collapse_time_and_channels_torch_transform] else: self.transforms = None # get all h5 paths in the root folder and read them # each h5 path represents a set of trajectories with a different PDE parameter self.h5_paths = glob.glob(f"{self.data_root}/*.h5") if len(self.h5_paths) == 0: self.h5_paths = glob.glob(f"{self.data_root}/*.hdf5") if self.pde == PDE.DarcyFlow2D: self.h5_files = [file for file in self.h5_paths] else: self.h5_files = [h5py.File(file, "r") for file in self.h5_paths] # extract the individual trajectories from each h5 file if self.pde == PDE.ReactionDiffusion2D or self.pde == PDE.TurbulentFlow2D: self.seqs = [list(h5_file.keys()) for h5_file in self.h5_files] elif self.pde == PDE.NavierStokes2D: # The individual trajectories are stored in key: 'solutions' self.seqs = [h5_file["solutions"] for h5_file in self.h5_files] elif self.pde == PDE.KortewegDeVries1D: self.seqs = [h5_file["tensor"] for h5_file in self.h5_files] elif self.pde == PDE.DarcyFlow2D: # There is an issue where too many files are open, os throws errno 24 self.seqs = [file for file in self.h5_paths] else: self.seqs = [h5py.File(file, "r") for file in self.h5_paths] if self.frac_param_combinations < 1: total_params = math.ceil(len(self.seqs) * self.frac_ics_per_param) logging.info( f"trimming dataset from length {len(self.seqs)} to {total_params}" ) if self.random_sample_param: # Just a quick sanity check to ensure that all of the variables are the same length # If this fails, something has gone VERY wrong assert len(self.seqs) == len(self.h5_paths) and len( self.h5_paths ) == len( self.h5_files ), f"The dataloader variables are mismatched. seqs = {len(self.seqs)}, h5_paths = {len(self.h5_paths)}, h5_files = {len(self.h5_files)}" # We've had issues in the past with reproducibility so this forces a seed # Also will keep the datasets the same regardless of the training and weight init seeds num_sequences: int = len(self.seqs) requested_dataset_size: int = int( num_sequences * self.frac_param_combinations ) indices = np.arange(num_sequences) sample_seed: int = 42 rng_generator = np.random.default_rng(seed=sample_seed) sampled_indices = rng_generator.choice( indices, size=requested_dataset_size, replace=False ) logging.info( f"Using random sampling to trim the dataset down from length {len(self.seqs)} to {requested_dataset_size}" ) assert ( len(set(sampled_indices.tolist())) == sampled_indices.shape[0] ), f"Duplicate items in random sampling of PDE parameters!" assert ( sampled_indices.shape[0] == requested_dataset_size ), f"Mismatch between the requested dataset sample size and the new sampled dataset. frac requested = {self.frac_param_combinations}, requested size = {requested_dataset_size}, new size = {sampled_indices.shape[0]}" self.seqs = [self.seqs[i] for i in sampled_indices] self.h5_paths = [self.h5_paths[i] for i in sampled_indices] self.h5_files = [self.h5_files[i] for i in sampled_indices] else: self.seqs = self.seqs[:total_params] self.h5_paths = self.h5_paths[:total_params] self.h5_files = self.h5_files[:total_params] self.num_params = len(self.seqs) if self.pde == PDE.KortewegDeVries1D: # Since it follows the same format at 1D reaction diffusion self.num_ics_per_param = self.seqs[0].shape[0] elif self.pde == PDE.DarcyFlow2D: self.num_ics_per_param = 1 # Each param only has one IC elif self.pde != PDE.NavierStokes2D: self.num_ics_per_param = len( min([self.seqs[i] for i in range(len(self.seqs))]) ) # to manage un-even number of ICs per param else: self.num_ics_per_param = min( [self.seqs[i].shape[0] for i in range(len(self.seqs))] ) # Trim nmber of ICs per parameter self.num_ics_per_param = math.ceil( self.num_ics_per_param * self.frac_ics_per_param ) # We also need to save the dx, dt, dy information in order to compute the PDE residual if pde == PDE.ReactionDiffusion2D or pde == PDE.TurbulentFlow2D: self.x = self.h5_files[0]["0001"]["grid"]["x"][:] self.y = self.h5_files[0]["0001"]["grid"]["y"][:] self.t = torch.Tensor(self.h5_files[0]["0001"]["grid"]["t"][:]) elif pde == PDE.NavierStokes2D: self.x = self.h5_files[0]["x-coordinate"][:] self.y = self.h5_files[0]["y-coordinate"][:] self.t = torch.Tensor(self.h5_files[0]["t-coordinate"][:]) elif pde == PDE.DarcyFlow2D: # Not ideal but it's fine to just hard code the current coordinates darcy flow domain_len = 1 # Uniform grid with 1 - same regardless of resolution d = h5py.File(self.seqs[0], "r") size, _, _ = d["sol"].shape d.close() x = np.linspace(0, domain_len, size, endpoint=False) self.x = torch.from_numpy(x) self.y = torch.from_numpy(x) self.t = ( torch.ones(10, dtype=float) * -1 ) # Darcy flow is non time dependent so we use -1 else: # All of the 1D systems self.y = None # There is no y component self.x = self.h5_files[0]["x-coordinate"][:] self.t = torch.Tensor(self.h5_files[0]["t-coordinate"][:]) if self.downsample_factor != 0: self.y = ( None if self.y is None else signal.decimate(self.y, q=self.downsample_factor, axis=0).copy() ) self.x = signal.decimate(self.x, q=self.downsample_factor, axis=0).copy() self.x = torch.Tensor(self.x) self.y = torch.Tensor(self.y) if self.y is not None else None logging.info( f"Initialized dataset with {self.num_params} parameter combinations" ) def __len__(self): """ Number of parameters * number of ICs = number of full trajectories. """ if self.train: return self.num_params * self.num_ics_per_param else: return self.num_params * self.num_ics_per_param * self.num_windows def __getitem__(self, index: int): """ Loops over all parameters and ICs, and randomly samples time windows. Returns: x: conditioning frames, shape of [n_past, spatial/channel dims] y: target frame(s), shape of [n_future, spatial/channel dims] param_dict: dictionary containing the true PDE parameter for the trajectory. """ # Compute the parameter and ic index for train loader if self.train: param_index = index // self.num_ics_per_param ic_index = index % self.num_ics_per_param else: # Compute the parameter, ic index, and window index for validation/test loaders # index is assumed to be in row major format of [num_params, num_ics_per_param, num_windows] dataset matrix organization param_index = index // (self.num_ics_per_param * self.num_windows) ic_index = (index // self.num_windows) % self.num_ics_per_param window_index = index % self.num_windows # get the corresponding trajectory and parameters h5_file = self.h5_files[param_index] h5_path = self.h5_paths[param_index] param_dict = extract_params_from_path(h5_path, self.pde) if self.pde == PDE.ReactionDiffusion2D or self.pde == PDE.TurbulentFlow2D: # get data seq = self.seqs[param_index][ic_index] traj = torch.Tensor( np.array(h5_file[f"{seq}/data"], dtype="f") ) # dim = [seq_len, spatial_dim_1, spatial_dim_2, channels] elif self.pde == PDE.NavierStokes2D: seq = self.seqs[param_index] traj = torch.Tensor(seq[ic_index]) # dim = [seq_len (t), spatial_dim_1, spatial_dim_2, channels] elif self.pde == PDE.DarcyFlow2D: # Unique since there is no time dim # There is also only one ic per param seq = h5py.File(self.seqs[param_index], "r") coeff = torch.from_numpy(np.asarray(seq["coeff"])) coeff = torch.squeeze(coeff) coeff = torch.unsqueeze(coeff, dim=0) # Channel first repr # We treat the coeff as a binary mask min_val = coeff.min() max_val = coeff.max() # generate the binary mask coeff = coeff - min_val binary_mask = coeff > 0 def wrap_scalar(x): return torch.Tensor([x.item()]) param_dict["coeff"] = binary_mask.float() param_dict["max_val"] = wrap_scalar(max_val) param_dict["min_val"] = wrap_scalar(min_val) traj = torch.from_numpy(np.asarray(seq["sol"])) seq.close() else: seq = self.seqs[param_index] traj = torch.Tensor(np.array(h5_file["tensor"][ic_index])) traj = traj[:: self.dilation] # subsample based on dilation # sample a random window of length [n_past] from this trajectory if traj.shape[0] - self.n_past == 0: start = 0 # if n_past > 1, problem is well posed if self.n_past == 1: raise ValueError("Problem is ill-posed when n_past == 1. ") else: if self.train: start = np.random.randint( self.window_start_index, self.window_end_index - self.n_past, ) else: # multiply with self.n_past to avoid overlapping in validation/test samples start = self.window_start_index + ( window_index * (self.n_past) * self.every_nth_window ) if self.pde != PDE.DarcyFlow2D: traj = traj[start : start + self.n_past] time_frames = self.t[start : start + self.n_past] else: time_frames = -1 * torch.ones(self.n_past, dtype=float) # 2D systems if len(traj.shape) == 4: # [T, Channels, Spatial, Spatial] traj = traj.permute((0, 3, 1, 2)) if self.downsample_factor != 0: traj = signal.decimate(traj, q=self.downsample_factor, axis=-1) traj = ( torch.Tensor( signal.decimate(traj, q=self.downsample_factor, axis=-2).copy() ) if len(traj.shape) == 4 else torch.Tensor(traj.copy()) ) # split into conditioning and target frames if self.pde == PDE.DarcyFlow2D: # Transforms to reshape the traj to the expected shape # nx x ny x 1 -> T, C, X, Y # T == C == 1 traj = torch.squeeze(traj) traj = torch.unsqueeze(traj, dim=0) traj = torch.unsqueeze(traj, dim=0) x, y = ( traj, traj, ) x = x.float() y = y.float() else: x, y = torch.split(traj, [self.n_past, 0], dim=0) if self.transforms is not None: # Perform any data transforms if specified for T in self.transforms: x, y, param_dict = T((x, y, param_dict)) # return spatial/temporal grid, frames and parameters spatial_grid = (self.x, self.y) if self.y is not None else (self.x,) ic_index = torch.tensor([ic_index], dtype=float) return spatial_grid, self.t, x, y, time_frames, ic_index, param_dict