# Base system parameters # Defines common structure and defaults for BOTH data AND model # Each system inherits this and overrides specific values # ============ Data Parameters ============ name: "placeholder_inverse" data_root: "placeholder_path" train_data_root: ${system_params.data_root}/train val_data_root: ${system_params.data_root}/validation ood_data_root: ${system_params.data_root}/out_of_distribution ood_data_root_extreme: ${system_params.data_root}/out_of_distribution_extreme test_data_root: ${system_params.data_root}/test pde_name: "placeholder_pde" num_channels: 1 cutoff_first_n_frames: 0 # ============ Model - System-Specific Parameters ============ params_to_predict: [] normalize: False logspace: False mlp_type: "mlp" # Default to standard MLP (2ddf overrides to "conv") downsampler_input_dim: 2 # 1 for 1D systems, 2 for 2D systems # ============ FNO Architecture ============ fno_hidden_channels: 64 fno_encoder_layers: 4 fno_downsampler_layers: 4 fno_dropout: 0 fno_mlp_layers: 1 fno_n_modes: 16 fno_hidden_channels_50k: 16 fno_encoder_layers_50k: 6 fno_hidden_channels_50mil: 200 fno_encoder_layers_50mil: 4 fno_downsampler: _target_: pdeinvbench.models.downsampler.ConvDownsampler input_dimension: ${system_params.downsampler_input_dim} n_layers: ${model.downsampler_layers} in_channels: ${model.hidden_channels} out_channels: ${model.hidden_channels} kernel_size: 3 stride: 1 padding: 2 dropout: ${model.dropout} # ============ ResNet Architecture ============ resnet_hidden_channels: 128 resnet_encoder_layers: 13 resnet_downsampler_layers: 4 resnet_dropout: 0 resnet_mlp_layers: 1 resnet_downsampler: _target_: pdeinvbench.models.downsampler.ConvDownsampler input_dimension: ${system_params.downsampler_input_dim} n_layers: ${model.downsampler_layers} in_channels: ${model.hidden_channels} out_channels: ${model.hidden_channels} kernel_size: 3 stride: 1 padding: 2 dropout: ${model.dropout} # ============ ScOT Architecture ============ scot_hidden_channels: 32 scot_encoder_layers: 4 scot_downsampler_layers: 4 scot_dropout: 0 scot_mlp_layers: 1 scot_mlp_hidden_size: 32 scot_condition_on_time: False scot_embed_dim: 36 scot_hidden_size: 32 scot_patch_size: 4 scot_num_heads: [3, 6, 12, 24] scot_skip_connections: [2, 2, 2, 2] scot_depths: [1, 1, 1, 1] scot_downsampler: _target_: pdeinvbench.models.downsampler.ConvDownsampler input_dimension: ${system_params.downsampler_input_dim} n_layers: ${model.downsampler_layers} in_channels: ${model.hidden_channels} out_channels: ${model.hidden_channels} kernel_size: 3 stride: 1 padding: 2 dropout: ${model.dropout}