|
|
import matplotlib.animation as animation |
|
|
import matplotlib.pyplot as plt |
|
|
import torch |
|
|
from functorch.dim import tree_flatten, tree_map |
|
|
import logging |
|
|
|
|
|
""" |
|
|
Helpers for various PyTests. |
|
|
""" |
|
|
|
|
|
|
|
|
def prune_boundary(array, dim): |
|
|
""" |
|
|
Prune the boundary of an array. |
|
|
""" |
|
|
if dim == 0: |
|
|
return array[1:-2] |
|
|
elif dim == 1: |
|
|
return array[:, 1:-2] |
|
|
elif dim == 2: |
|
|
return array[:, :, 1:-2] |
|
|
elif dim == 3: |
|
|
return array[:, :, :, 1:-2] |
|
|
else: |
|
|
raise ValueError("Invalid dimension.") |
|
|
|
|
|
|
|
|
def array_difference_less_than(a, b, val): |
|
|
""" |
|
|
Check if all elements in A - B are less than val. |
|
|
""" |
|
|
return torch.all((a - b) < val) |
|
|
|
|
|
|
|
|
def generate_synthetic_data_1d(batch_size=4, Nx=100, Nt=1024): |
|
|
""" |
|
|
Generate synthetic data for 1D reaction diffusion. |
|
|
""" |
|
|
x = torch.linspace(0, 1, Nx) |
|
|
t = torch.linspace(0, 1, Nt) |
|
|
tt, xx = torch.meshgrid(t, x) |
|
|
u = torch.sin(xx) * torch.cos(tt) |
|
|
du_dx = torch.cos(tt) * torch.cos(xx) |
|
|
du_dt = -torch.sin(tt) * torch.sin(xx) |
|
|
ddu_dxx = -torch.cos(tt) * torch.sin(xx) |
|
|
du_sqr_dx = 2 * (torch.cos(tt) ** 2) * torch.sin(xx) * torch.cos(xx) |
|
|
|
|
|
|
|
|
u = u.repeat(batch_size, 1, 1) |
|
|
du_dx = du_dx.repeat(batch_size, 1, 1) |
|
|
du_dt = du_dt.repeat(batch_size, 1, 1) |
|
|
ddu_dxx = ddu_dxx.repeat(batch_size, 1, 1) |
|
|
du_sqr_dx = du_sqr_dx.repeat(batch_size, 1, 1) |
|
|
return x, t, u, du_dx, du_dt, ddu_dxx, du_sqr_dx |
|
|
|
|
|
|
|
|
def generate_synthetic_data_2d(batch_size=4, Nx=100, Ny=100, Nt=1024): |
|
|
""" |
|
|
Generate synthetic data to test 2D finite differences. (3D including time). |
|
|
""" |
|
|
x = torch.linspace(0, 1, Nx) |
|
|
y = torch.linspace(0, 1, Ny) |
|
|
t = torch.linspace(0, 1, Nt) |
|
|
tt, xx, yy = torch.meshgrid(t, x, y) |
|
|
u = torch.cos(tt) * torch.sin(xx) * y * y |
|
|
du_dx = y * y * torch.cos(tt) * torch.cos(xx) |
|
|
du_dy = 2 * y * torch.cos(tt) * torch.sin(xx) |
|
|
ddu_dxx = -(y * y) * torch.cos(tt) * torch.sin(xx) |
|
|
ddu_dyy = 2 * torch.cos(tt) * torch.sin(xx) |
|
|
du_dt = -y * y * torch.sin(tt) * torch.sin(xx) |
|
|
|
|
|
|
|
|
u = u.repeat(batch_size, 1, 1, 1) |
|
|
du_dx = du_dx.repeat(batch_size, 1, 1, 1) |
|
|
du_dy = du_dy.repeat(batch_size, 1, 1, 1) |
|
|
ddu_dxx = ddu_dxx.repeat(batch_size, 1, 1, 1) |
|
|
ddu_dyy = ddu_dyy.repeat(batch_size, 1, 1, 1) |
|
|
du_dt = du_dt.repeat(batch_size, 1, 1, 1) |
|
|
return x, y, t, u, du_dx, du_dy, ddu_dxx, ddu_dyy, du_dt |
|
|
|
|
|
|
|
|
def create_gif_and_save(data, filename, title, cmap="magma", interval=50): |
|
|
""" |
|
|
Create a gif from a list of images and save it. |
|
|
:param data: list of frames |
|
|
:param filename: location to save gif |
|
|
:param title: title of the gif |
|
|
:param cmap: colormap |
|
|
:param interval: interval between frames |
|
|
""" |
|
|
vmin = data.min() |
|
|
vmax = data.max() |
|
|
fig, ax = plt.subplots() |
|
|
im = ax.imshow(data[0], animated=True, cmap=cmap, vmin=vmin, vmax=vmax) |
|
|
ax.set_title(title) |
|
|
fig.colorbar(im) |
|
|
|
|
|
def _update(i): |
|
|
im.set_array(data[i]) |
|
|
return (im,) |
|
|
|
|
|
animation_fig = animation.FuncAnimation( |
|
|
fig, |
|
|
_update, |
|
|
frames=len(data), |
|
|
interval=interval, |
|
|
blit=True, |
|
|
repeat_delay=10, |
|
|
) |
|
|
|
|
|
try: |
|
|
animation_fig.save(filename, writer="pillow") |
|
|
except Exception as e: |
|
|
|
|
|
print(f"Pillow writer failed, trying imagemagick: {e}") |
|
|
animation_fig.save(filename, writer="imagemagick") |
|
|
finally: |
|
|
plt.close(fig) |
|
|
|