DabbyOWL's picture
Reset history
484b847 verified
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import torch
from functorch.dim import tree_flatten, tree_map
import logging
"""
Helpers for various PyTests.
"""
def prune_boundary(array, dim):
"""
Prune the boundary of an array.
"""
if dim == 0:
return array[1:-2]
elif dim == 1:
return array[:, 1:-2]
elif dim == 2:
return array[:, :, 1:-2]
elif dim == 3:
return array[:, :, :, 1:-2]
else:
raise ValueError("Invalid dimension.")
def array_difference_less_than(a, b, val):
"""
Check if all elements in A - B are less than val.
"""
return torch.all((a - b) < val)
def generate_synthetic_data_1d(batch_size=4, Nx=100, Nt=1024):
"""
Generate synthetic data for 1D reaction diffusion.
"""
x = torch.linspace(0, 1, Nx)
t = torch.linspace(0, 1, Nt)
tt, xx = torch.meshgrid(t, x)
u = torch.sin(xx) * torch.cos(tt)
du_dx = torch.cos(tt) * torch.cos(xx)
du_dt = -torch.sin(tt) * torch.sin(xx)
ddu_dxx = -torch.cos(tt) * torch.sin(xx)
du_sqr_dx = 2 * (torch.cos(tt) ** 2) * torch.sin(xx) * torch.cos(xx)
## Account for batch sizes
u = u.repeat(batch_size, 1, 1)
du_dx = du_dx.repeat(batch_size, 1, 1)
du_dt = du_dt.repeat(batch_size, 1, 1)
ddu_dxx = ddu_dxx.repeat(batch_size, 1, 1)
du_sqr_dx = du_sqr_dx.repeat(batch_size, 1, 1)
return x, t, u, du_dx, du_dt, ddu_dxx, du_sqr_dx
def generate_synthetic_data_2d(batch_size=4, Nx=100, Ny=100, Nt=1024):
"""
Generate synthetic data to test 2D finite differences. (3D including time).
"""
x = torch.linspace(0, 1, Nx)
y = torch.linspace(0, 1, Ny)
t = torch.linspace(0, 1, Nt)
tt, xx, yy = torch.meshgrid(t, x, y)
u = torch.cos(tt) * torch.sin(xx) * y * y
du_dx = y * y * torch.cos(tt) * torch.cos(xx)
du_dy = 2 * y * torch.cos(tt) * torch.sin(xx)
ddu_dxx = -(y * y) * torch.cos(tt) * torch.sin(xx)
ddu_dyy = 2 * torch.cos(tt) * torch.sin(xx)
du_dt = -y * y * torch.sin(tt) * torch.sin(xx)
# Account for batch sizes
u = u.repeat(batch_size, 1, 1, 1)
du_dx = du_dx.repeat(batch_size, 1, 1, 1)
du_dy = du_dy.repeat(batch_size, 1, 1, 1)
ddu_dxx = ddu_dxx.repeat(batch_size, 1, 1, 1)
ddu_dyy = ddu_dyy.repeat(batch_size, 1, 1, 1)
du_dt = du_dt.repeat(batch_size, 1, 1, 1)
return x, y, t, u, du_dx, du_dy, ddu_dxx, ddu_dyy, du_dt
def create_gif_and_save(data, filename, title, cmap="magma", interval=50):
"""
Create a gif from a list of images and save it.
:param data: list of frames
:param filename: location to save gif
:param title: title of the gif
:param cmap: colormap
:param interval: interval between frames
"""
vmin = data.min()
vmax = data.max()
fig, ax = plt.subplots()
im = ax.imshow(data[0], animated=True, cmap=cmap, vmin=vmin, vmax=vmax)
ax.set_title(title)
fig.colorbar(im)
def _update(i):
im.set_array(data[i])
return (im,)
animation_fig = animation.FuncAnimation(
fig,
_update,
frames=len(data),
interval=interval,
blit=True,
repeat_delay=10,
)
# Specify writer for GIF - requires pillow: pip install pillow
try:
animation_fig.save(filename, writer="pillow")
except Exception as e:
# Fallback to imagemagick if pillow fails
print(f"Pillow writer failed, trying imagemagick: {e}")
animation_fig.save(filename, writer="imagemagick")
finally:
plt.close(fig) # Clean up to avoid memory leaks