File size: 16,770 Bytes
484b847 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import glob
import logging
import math
import h5py
import numpy as np
import torch
from scipy import signal
from torch.utils.data import Dataset
from pdeinvbench.data.transforms import collapse_time_and_channels_torch_transform
from pdeinvbench.data.utils import extract_params_from_path
from pdeinvbench.utils.types import PDE, PDE_NUM_SPATIAL, PDE_TRAJ_LEN
class PDE_MultiParam(Dataset):
"""Data Loader that loads the multiple parameter version of PDE Datasets."""
def __init__(
self,
data_root: str,
pde: PDE,
n_past: int,
dilation: int,
cutoff_first_n_frames: int,
train: bool,
frac_param_combinations: float = 1,
frac_ics_per_param: float = 1,
random_sample_param: bool = True,
downsample_factor: int = 0,
every_nth_window: int = 1,
window_start_percent: float = 0.0,
window_end_percent: float = 1.0,
):
"""
Args:
data_root: path containing the h5 files for the current data split
pde: name of the PDE system - one of the enum values.
n_past: number of conditioning frames
dilation: frequency at which to subsample the ground truth trajectories in the time dimension
cutoff_first_n_frames: number of initial frames to cutoff in each trajectory (may want to do this e.g. if initial PDE residuals are very high)
train: if training dataloader, windows are randomly sampled from each trajecory, if non-training dataloader we loop through all non-overlapping windows
frac_param_combinations: fraction of parameter combinations to use. 1 takes all parameters. "0.x" takes x percent of total parameters
frac_ics_per_param: fraction of initial conditions per parameter combination to keep.
random_sample_param: (bool) If frac_param_combinations < 1, true means we randomly sample params and false means we grab the first n_frac params. Defaults to true.
downsample_factor: downsample a solution field spatially by the 'downsample_factor'. eg if downsample_factor=4, sol field spatial size=[128,128] --downsample--> final spatial size = [32,32]
every_nth_window: take every nth window from the list of non-over-lapping windows
window_start_percent: percent of the way through the trajectory to start the window after cutoff_first_n_frames
window_end_percent: percent of the way through the trajectory to end the window
"""
self.data_root = data_root
self.pde = pde
self.n_past = n_past
self.dilation = dilation
self.cutoff_first_n_frames = cutoff_first_n_frames
self.frac_param_combinations = frac_param_combinations
self.frac_ics_per_param = frac_ics_per_param
self.random_sample_param = random_sample_param
self.train = train
self.every_nth_window = every_nth_window
assert (
window_start_percent < window_end_percent
), "window_start_percent must be less than window_end_percent"
self.window_start_index = int(
(PDE_TRAJ_LEN[self.pde] - self.cutoff_first_n_frames) * window_start_percent
+ self.cutoff_first_n_frames
)
self.window_end_index = int(
(PDE_TRAJ_LEN[self.pde] - self.cutoff_first_n_frames) * window_end_percent
+ self.cutoff_first_n_frames
)
self.total_trajectory_length = self.window_end_index - self.window_start_index
if self.train:
self.num_windows = self.total_trajectory_length - self.n_past - 1
else:
self.num_windows = (self.total_trajectory_length) // (
(self.n_past) * self.every_nth_window
)
if self.num_windows == 0 and self.every_nth_window > 1:
self.every_nth_window = 1
self.num_windows = (self.total_trajectory_length) // ((self.n_past))
# Quick check basically force a non-AR dataloader for darcy flow
if self.pde == PDE.DarcyFlow2D:
self.num_windows = 1
self.downsample_factor = downsample_factor
if PDE_NUM_SPATIAL[pde] == 2:
self.transforms = [collapse_time_and_channels_torch_transform]
else:
self.transforms = None
# get all h5 paths in the root folder and read them
# each h5 path represents a set of trajectories with a different PDE parameter
self.h5_paths = glob.glob(f"{self.data_root}/*.h5")
if len(self.h5_paths) == 0:
self.h5_paths = glob.glob(f"{self.data_root}/*.hdf5")
if self.pde == PDE.DarcyFlow2D:
self.h5_files = [file for file in self.h5_paths]
else:
self.h5_files = [h5py.File(file, "r") for file in self.h5_paths]
# extract the individual trajectories from each h5 file
if self.pde == PDE.ReactionDiffusion2D or self.pde == PDE.TurbulentFlow2D:
self.seqs = [list(h5_file.keys()) for h5_file in self.h5_files]
elif self.pde == PDE.NavierStokes2D:
# The individual trajectories are stored in key: 'solutions'
self.seqs = [h5_file["solutions"] for h5_file in self.h5_files]
elif self.pde == PDE.KortewegDeVries1D:
self.seqs = [h5_file["tensor"] for h5_file in self.h5_files]
elif self.pde == PDE.DarcyFlow2D:
# There is an issue where too many files are open, os throws errno 24
self.seqs = [file for file in self.h5_paths]
else:
self.seqs = [h5py.File(file, "r") for file in self.h5_paths]
if self.frac_param_combinations < 1:
total_params = math.ceil(len(self.seqs) * self.frac_ics_per_param)
logging.info(
f"trimming dataset from length {len(self.seqs)} to {total_params}"
)
if self.random_sample_param:
# Just a quick sanity check to ensure that all of the variables are the same length
# If this fails, something has gone VERY wrong
assert len(self.seqs) == len(self.h5_paths) and len(
self.h5_paths
) == len(
self.h5_files
), f"The dataloader variables are mismatched. seqs = {len(self.seqs)}, h5_paths = {len(self.h5_paths)}, h5_files = {len(self.h5_files)}"
# We've had issues in the past with reproducibility so this forces a seed
# Also will keep the datasets the same regardless of the training and weight init seeds
num_sequences: int = len(self.seqs)
requested_dataset_size: int = int(
num_sequences * self.frac_param_combinations
)
indices = np.arange(num_sequences)
sample_seed: int = 42
rng_generator = np.random.default_rng(seed=sample_seed)
sampled_indices = rng_generator.choice(
indices, size=requested_dataset_size, replace=False
)
logging.info(
f"Using random sampling to trim the dataset down from length {len(self.seqs)} to {requested_dataset_size}"
)
assert (
len(set(sampled_indices.tolist())) == sampled_indices.shape[0]
), f"Duplicate items in random sampling of PDE parameters!"
assert (
sampled_indices.shape[0] == requested_dataset_size
), f"Mismatch between the requested dataset sample size and the new sampled dataset. frac requested = {self.frac_param_combinations}, requested size = {requested_dataset_size}, new size = {sampled_indices.shape[0]}"
self.seqs = [self.seqs[i] for i in sampled_indices]
self.h5_paths = [self.h5_paths[i] for i in sampled_indices]
self.h5_files = [self.h5_files[i] for i in sampled_indices]
else:
self.seqs = self.seqs[:total_params]
self.h5_paths = self.h5_paths[:total_params]
self.h5_files = self.h5_files[:total_params]
self.num_params = len(self.seqs)
if self.pde == PDE.KortewegDeVries1D:
# Since it follows the same format at 1D reaction diffusion
self.num_ics_per_param = self.seqs[0].shape[0]
elif self.pde == PDE.DarcyFlow2D:
self.num_ics_per_param = 1 # Each param only has one IC
elif self.pde != PDE.NavierStokes2D:
self.num_ics_per_param = len(
min([self.seqs[i] for i in range(len(self.seqs))])
) # to manage un-even number of ICs per param
else:
self.num_ics_per_param = min(
[self.seqs[i].shape[0] for i in range(len(self.seqs))]
)
# Trim nmber of ICs per parameter
self.num_ics_per_param = math.ceil(
self.num_ics_per_param * self.frac_ics_per_param
)
# We also need to save the dx, dt, dy information in order to compute the PDE residual
if pde == PDE.ReactionDiffusion2D or pde == PDE.TurbulentFlow2D:
self.x = self.h5_files[0]["0001"]["grid"]["x"][:]
self.y = self.h5_files[0]["0001"]["grid"]["y"][:]
self.t = torch.Tensor(self.h5_files[0]["0001"]["grid"]["t"][:])
elif pde == PDE.NavierStokes2D:
self.x = self.h5_files[0]["x-coordinate"][:]
self.y = self.h5_files[0]["y-coordinate"][:]
self.t = torch.Tensor(self.h5_files[0]["t-coordinate"][:])
elif pde == PDE.DarcyFlow2D:
# Not ideal but it's fine to just hard code the current coordinates darcy flow
domain_len = 1 # Uniform grid with 1 - same regardless of resolution
d = h5py.File(self.seqs[0], "r")
size, _, _ = d["sol"].shape
d.close()
x = np.linspace(0, domain_len, size, endpoint=False)
self.x = torch.from_numpy(x)
self.y = torch.from_numpy(x)
self.t = (
torch.ones(10, dtype=float) * -1
) # Darcy flow is non time dependent so we use -1
else:
# All of the 1D systems
self.y = None # There is no y component
self.x = self.h5_files[0]["x-coordinate"][:]
self.t = torch.Tensor(self.h5_files[0]["t-coordinate"][:])
if self.downsample_factor != 0:
self.y = (
None
if self.y is None
else signal.decimate(self.y, q=self.downsample_factor, axis=0).copy()
)
self.x = signal.decimate(self.x, q=self.downsample_factor, axis=0).copy()
self.x = torch.Tensor(self.x)
self.y = torch.Tensor(self.y) if self.y is not None else None
logging.info(
f"Initialized dataset with {self.num_params} parameter combinations"
)
def __len__(self):
"""
Number of parameters * number of ICs = number of full trajectories.
"""
if self.train:
return self.num_params * self.num_ics_per_param
else:
return self.num_params * self.num_ics_per_param * self.num_windows
def __getitem__(self, index: int):
"""
Loops over all parameters and ICs, and randomly samples time windows.
Returns:
x: conditioning frames, shape of [n_past, spatial/channel dims]
y: target frame(s), shape of [n_future, spatial/channel dims]
param_dict: dictionary containing the true PDE parameter for the trajectory.
"""
# Compute the parameter and ic index for train loader
if self.train:
param_index = index // self.num_ics_per_param
ic_index = index % self.num_ics_per_param
else:
# Compute the parameter, ic index, and window index for validation/test loaders
# index is assumed to be in row major format of [num_params, num_ics_per_param, num_windows] dataset matrix organization
param_index = index // (self.num_ics_per_param * self.num_windows)
ic_index = (index // self.num_windows) % self.num_ics_per_param
window_index = index % self.num_windows
# get the corresponding trajectory and parameters
h5_file = self.h5_files[param_index]
h5_path = self.h5_paths[param_index]
param_dict = extract_params_from_path(h5_path, self.pde)
if self.pde == PDE.ReactionDiffusion2D or self.pde == PDE.TurbulentFlow2D:
# get data
seq = self.seqs[param_index][ic_index]
traj = torch.Tensor(
np.array(h5_file[f"{seq}/data"], dtype="f")
) # dim = [seq_len, spatial_dim_1, spatial_dim_2, channels]
elif self.pde == PDE.NavierStokes2D:
seq = self.seqs[param_index]
traj = torch.Tensor(seq[ic_index])
# dim = [seq_len (t), spatial_dim_1, spatial_dim_2, channels]
elif self.pde == PDE.DarcyFlow2D:
# Unique since there is no time dim
# There is also only one ic per param
seq = h5py.File(self.seqs[param_index], "r")
coeff = torch.from_numpy(np.asarray(seq["coeff"]))
coeff = torch.squeeze(coeff)
coeff = torch.unsqueeze(coeff, dim=0) # Channel first repr
# We treat the coeff as a binary mask
min_val = coeff.min()
max_val = coeff.max()
# generate the binary mask
coeff = coeff - min_val
binary_mask = coeff > 0
def wrap_scalar(x):
return torch.Tensor([x.item()])
param_dict["coeff"] = binary_mask.float()
param_dict["max_val"] = wrap_scalar(max_val)
param_dict["min_val"] = wrap_scalar(min_val)
traj = torch.from_numpy(np.asarray(seq["sol"]))
seq.close()
else:
seq = self.seqs[param_index]
traj = torch.Tensor(np.array(h5_file["tensor"][ic_index]))
traj = traj[:: self.dilation] # subsample based on dilation
# sample a random window of length [n_past] from this trajectory
if traj.shape[0] - self.n_past == 0:
start = 0
# if n_past > 1, problem is well posed
if self.n_past == 1:
raise ValueError("Problem is ill-posed when n_past == 1. ")
else:
if self.train:
start = np.random.randint(
self.window_start_index,
self.window_end_index - self.n_past,
)
else:
# multiply with self.n_past to avoid overlapping in validation/test samples
start = self.window_start_index + (
window_index * (self.n_past) * self.every_nth_window
)
if self.pde != PDE.DarcyFlow2D:
traj = traj[start : start + self.n_past]
time_frames = self.t[start : start + self.n_past]
else:
time_frames = -1 * torch.ones(self.n_past, dtype=float)
# 2D systems
if len(traj.shape) == 4:
# [T, Channels, Spatial, Spatial]
traj = traj.permute((0, 3, 1, 2))
if self.downsample_factor != 0:
traj = signal.decimate(traj, q=self.downsample_factor, axis=-1)
traj = (
torch.Tensor(
signal.decimate(traj, q=self.downsample_factor, axis=-2).copy()
)
if len(traj.shape) == 4
else torch.Tensor(traj.copy())
)
# split into conditioning and target frames
if self.pde == PDE.DarcyFlow2D:
# Transforms to reshape the traj to the expected shape
# nx x ny x 1 -> T, C, X, Y
# T == C == 1
traj = torch.squeeze(traj)
traj = torch.unsqueeze(traj, dim=0)
traj = torch.unsqueeze(traj, dim=0)
x, y = (
traj,
traj,
)
x = x.float()
y = y.float()
else:
x, y = torch.split(traj, [self.n_past, 0], dim=0)
if self.transforms is not None:
# Perform any data transforms if specified
for T in self.transforms:
x, y, param_dict = T((x, y, param_dict))
# return spatial/temporal grid, frames and parameters
spatial_grid = (self.x, self.y) if self.y is not None else (self.x,)
ic_index = torch.tensor([ic_index], dtype=float)
return spatial_grid, self.t, x, y, time_frames, ic_index, param_dict
|