File size: 12,871 Bytes
484b847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
#!/usr/bin/env python3
"""
Compute energy spectra from vorticity field data.

This script loads vorticity trajectory data from a .npy file and computes
the azimuthally averaged energy spectrum E(k). It outputs both the spectrum
data as a .npz file and a visualization plot as a .png file.

To run direct numerical simulations and get fluid fields, please use Jax-CFD: https://github.com/google/jax-cfd
Commit hash we used: 0c17e3855702f884265b97bd6ff0793c34f3155e

Usage:
    uv run python fluid_stats.py path/to/vorticity.npy --out_dir results/
"""

import argparse
import logging
import os
from functools import partial

import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np
from jax import jit, vmap
from tqdm import tqdm

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
)
logger = logging.getLogger(__name__)


# =============================================================================
# Core computation functions
# =============================================================================


@jit
def vorticity_to_velocity(vorticity):
    """
    Convert vorticity to velocity components using the streamfunction.

    Solves the Poisson equation in Fourier space: psi_hat = -vorticity_hat / k^2
    Then computes velocity from streamfunction: u_x = -d(psi)/dy, u_y = d(psi)/dx

    Parameters
    ----------
    vorticity : jnp.ndarray, shape (X, Y)
        2D vorticity field on a square grid.

    Returns
    -------
    u_x : jnp.ndarray, shape (X, Y)
        x-component of velocity.
    u_y : jnp.ndarray, shape (X, Y)
        y-component of velocity.
    """
    N = vorticity.shape[0]

    # Compute streamfunction from vorticity using Poisson equation
    # In Fourier space: psi_hat = -vorticity_hat / k^2
    vort_hat = jnp.fft.fft2(vorticity)

    # Create wavenumber arrays
    kx = jnp.fft.fftfreq(N, d=1.0) * 2 * jnp.pi
    ky = jnp.fft.fftfreq(N, d=1.0) * 2 * jnp.pi
    KX, KY = jnp.meshgrid(kx, ky, indexing="ij")
    K2 = KX**2 + KY**2

    # Avoid division by zero at k=0
    K2 = K2.at[0, 0].set(1.0)
    psi_hat = -vort_hat / K2
    psi_hat = psi_hat.at[0, 0].set(0.0)  # Set mean streamfunction to zero

    # Compute velocity components from streamfunction
    # u_x = -d(psi)/dy, u_y = d(psi)/dx
    u_x_hat = -1j * KY * psi_hat
    u_y_hat = 1j * KX * psi_hat

    u_x = jnp.real(jnp.fft.ifft2(u_x_hat))
    u_y = jnp.real(jnp.fft.ifft2(u_y_hat))

    return u_x, u_y


@partial(jit, static_argnames=["k_max"])
def energy_spectrum_single(u_x, u_y, k_max=None):
    """
    Compute azimuthally averaged energy spectrum E(k) for a single velocity field.

    The energy spectrum is computed by binning the 2D Fourier-transformed
    velocity field by wavenumber magnitude |k|.

    Parameters
    ----------
    u_x : jnp.ndarray, shape (X, Y)
        x-component of velocity.
    u_y : jnp.ndarray, shape (X, Y)
        y-component of velocity.
    k_max : int, optional
        Maximum wavenumber to compute. If None, uses N//3 (2/3 dealiasing rule).

    Returns
    -------
    E : jnp.ndarray, shape (k_max+1,)
        Energy spectrum E(k) for k = 0, 1, ..., k_max.
    """
    N = u_x.shape[0]

    # FFT, shifted so k=0 is at centre
    Ux = jnp.fft.fftshift(jnp.fft.fft2(u_x))
    Ux = Ux / (N**2)
    Uy = jnp.fft.fftshift(jnp.fft.fft2(u_y))
    Uy = Uy / (N**2)

    # Integer wave numbers
    kx = jnp.fft.fftshift(jnp.fft.fftfreq(N)) * N
    ky = kx
    KX, KY = jnp.meshgrid(kx, ky)
    K = jnp.hypot(KX, KY).astype(jnp.int32)

    if k_max is None:  # Nyquist under 2/3 de-alias
        k_max = N // 3

    # Vectorized computation of energy spectrum
    def compute_E_k(k):
        mask = K == k
        return 0.5 * jnp.sum(jnp.abs(Ux) ** 2 * mask + jnp.abs(Uy) ** 2 * mask)

    k_vals = jnp.arange(k_max + 1)
    E = vmap(compute_E_k)(k_vals)

    return E


@partial(jit, static_argnames=["k_max"])
def energy_spectrum_from_vorticity(vorticity, k_max=None):
    """
    Compute energy spectrum from vorticity field using vmap.

    Suitable for moderate resolution fields (up to ~1024x1024).
    For larger resolutions, use energy_spectrum_from_vorticity_lax_map.

    Parameters
    ----------
    vorticity : jnp.ndarray, shape (T, X, Y)
        Vorticity field over T time steps on an X x Y grid.
    k_max : int, optional
        Maximum wavenumber. If None, uses N//3 (2/3 dealiasing rule).

    Returns
    -------
    E : jnp.ndarray, shape (T, k_max+1)
        Energy spectrum for each time step.
    """
    N = vorticity.shape[1]

    if k_max is None:
        k_max = N // 3

    def process_timestep(vort_t):
        u_x, u_y = vorticity_to_velocity(vort_t)
        return energy_spectrum_single(u_x, u_y, k_max)

    # Vectorize over time dimension
    E = vmap(process_timestep)(vorticity)

    return E


@partial(jit, static_argnames=["k_max", "batch_size"])
def energy_spectrum_from_vorticity_lax_map(vorticity, k_max=None, batch_size=16):
    """
    Compute energy spectrum from vorticity field using jax.lax.map.

    Memory-efficient version suitable for high resolution fields (>1024x1024).
    Processes timesteps sequentially to reduce memory footprint.

    Parameters
    ----------
    vorticity : jnp.ndarray, shape (T, X, Y)
        Vorticity field over T time steps on an X x Y grid.
    k_max : int, optional
        Maximum wavenumber. If None, uses N//3 (2/3 dealiasing rule).
    batch_size : int, optional
        Batch size for lax.map processing. Default is 16.

    Returns
    -------
    E : jnp.ndarray, shape (T, k_max+1)
        Energy spectrum for each time step.
    """
    N = vorticity.shape[1]

    if k_max is None:
        k_max = N // 3

    def process_timestep(vort_t):
        u_x, u_y = vorticity_to_velocity(vort_t)
        return energy_spectrum_single(u_x, u_y, k_max)

    # Use lax.map instead of vmap for memory efficiency
    E = jax.lax.map(process_timestep, vorticity, batch_size=batch_size)

    return E


# =============================================================================
# Main script
# =============================================================================


def parse_args():
    """Parse command line arguments."""
    parser = argparse.ArgumentParser(
        description=(
            "Compute energy spectra from 2D vorticity trajectory data. "
            "Loads vorticity fields from a .npy file, computes the azimuthally "
            "averaged energy spectrum E(k), and saves both the spectrum data "
            "and a visualization plot."
        ),
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
    uv run python fluid_stats.py simulation.npy
    uv run python fluid_stats.py data/vorticity.npy --out_dir results/

Input format:
    The input .npy file should contain a 4D array with shape (batch, time, X, Y)
    where batch is the number of independent trajectories, time is the number
    of snapshots, and X, Y are the spatial grid dimensions.
        """,
    )

    parser.add_argument(
        "input_file",
        type=str,
        help=(
            "Path to the input .npy file containing vorticity data. "
            "Expected shape: (batch, time, X, Y) where X and Y are the "
            "spatial grid dimensions (must be square, i.e., X == Y)."
        ),
    )

    parser.add_argument(
        "--out_dir",
        type=str,
        default=".",
        help=(
            "Directory to save output files. Will be created if it does not "
            "exist. Output files are named based on the input filename. "
            "Default: current directory."
        ),
    )

    return parser.parse_args()


def main():
    """Main entry point for energy spectrum computation."""
    args = parse_args()

    # Setup
    logger.info("JAX devices: %s", jax.devices())

    # Validate input file
    if not os.path.exists(args.input_file):
        logger.error("Input file not found: %s", args.input_file)
        raise FileNotFoundError(f"Input file not found: {args.input_file}")

    if not args.input_file.endswith(".npy"):
        logger.warning(
            "Input file does not have .npy extension: %s", args.input_file
        )

    # Create output directory
    os.makedirs(args.out_dir, exist_ok=True)

    # Generate output filenames from input filename
    input_basename = os.path.splitext(os.path.basename(args.input_file))[0]
    data_filename = f"{input_basename}_spectrum_data.npz"
    plot_filename = f"{input_basename}_spectrum.png"
    data_path = os.path.join(args.out_dir, data_filename)
    plot_path = os.path.join(args.out_dir, plot_filename)

    # Load data
    logger.info("Loading data from: %s", args.input_file)
    field = np.load(args.input_file)
    logger.info("Loaded field with shape: %s", field.shape)

    # Validate shape
    if field.ndim != 4:
        logger.error(
            "Expected 4D array (batch, time, X, Y), got %dD array", field.ndim
        )
        raise ValueError(
            f"Expected 4D array (batch, time, X, Y), got {field.ndim}D array"
        )

    batch_size, time_steps, height, width = field.shape
    if height != width:
        logger.error(
            "Expected square spatial grid (X == Y), got %d x %d", height, width
        )
        raise ValueError(
            f"Expected square spatial grid (X == Y), got {height} x {width}"
        )

    resolution = height
    k_max = resolution // 3
    logger.info(
        "Processing %d trajectories with %d timesteps at %dx%d resolution",
        batch_size,
        time_steps,
        resolution,
        resolution,
    )
    logger.info("Maximum wavenumber (k_max): %d", k_max)

    # Compute energy spectrum
    logger.info("Computing energy spectra...")
    spectra_list = []

    for i in tqdm(range(batch_size), desc="Computing spectra"):
        if resolution > 1024:
            # Use memory-efficient lax.map for large resolutions
            single_spectrum = energy_spectrum_from_vorticity_lax_map(
                field[i], k_max
            )
        else:
            # Use vmap for moderate resolutions
            single_spectrum = energy_spectrum_from_vorticity(field[i], k_max)
        spectra_list.append(single_spectrum)

    # Stack all spectra
    all_spectra = jnp.stack(spectra_list)
    logger.info("All spectra shape: %s", all_spectra.shape)

    # Compute mean spectrum (over batch and time)
    mean_spectrum = all_spectra.reshape(-1, all_spectra.shape[-1]).mean(axis=0)
    logger.info("Mean spectrum shape: %s", mean_spectrum.shape)

    # Save spectrum data
    logger.info("Saving spectrum data to: %s", data_path)
    np.savez_compressed(
        data_path,
        mean_spectrum=np.array(mean_spectrum),
        all_spectra=np.array(all_spectra),
        k_values=np.arange(len(mean_spectrum)),
        resolution=resolution,
        batch_size=batch_size,
        time_steps=time_steps,
    )

    # Generate plot
    logger.info("Generating energy spectrum plot...")
    plt.figure(figsize=(10, 6))

    # Plot mean spectrum (skip k=0)
    offset = 1
    spectrum = mean_spectrum[offset:]
    k_values = np.arange(offset, len(mean_spectrum))
    plt.loglog(k_values, spectrum, "b-", linewidth=2, label="Mean spectrum")

    # Add k^{-5/3} reference line (Kolmogorov scaling for 3D turbulence)
    # and k^{-3} reference line (enstrophy cascade in 2D turbulence)
    k_match = min(10, len(spectrum) // 3)
    if k_match > 0:
        ref_value = float(spectrum[k_match - 1])

        # k^{-3} line (2D enstrophy cascade)
        scaling_k3 = ref_value * (k_match**3)
        k_theory = np.logspace(0, np.log10(len(mean_spectrum)), 100)
        power_law_k3 = scaling_k3 * k_theory ** (-3)
        plt.loglog(
            k_theory,
            power_law_k3,
            "k--",
            alpha=0.7,
            linewidth=1.5,
            label=r"$k^{-3}$ (enstrophy cascade)",
        )

        # k^{-5/3} line (inverse energy cascade)
        scaling_k53 = ref_value * (k_match ** (5 / 3))
        power_law_k53 = scaling_k53 * k_theory ** (-5 / 3)
        plt.loglog(
            k_theory,
            power_law_k53,
            "r--",
            alpha=0.7,
            linewidth=1.5,
            label=r"$k^{-5/3}$ (energy cascade)",
        )

    plt.xlabel("Wavenumber k", fontsize=12)
    plt.ylabel("Energy Spectrum E(k)", fontsize=12)
    plt.title(f"Energy Spectrum ({resolution}x{resolution} resolution)", fontsize=14)
    plt.legend()
    plt.grid(True, alpha=0.3)
    xlim = plt.xlim()
    plt.xlim(1, xlim[1])
    plt.tight_layout()

    # Save plot
    plt.savefig(plot_path, dpi=300, bbox_inches="tight")
    plt.close()
    logger.info("Plot saved to: %s", plot_path)

    logger.info("Done!")


if __name__ == "__main__":
    main()