zyyyyy6666 commited on
Commit
058d892
·
verified ·
1 Parent(s): 7add7af

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language:
5
+ - en
6
+ license: mit
7
+ task_categories:
8
+ - text-to-3d
9
+ - text-to-video
10
+ - other
11
+ tags:
12
+ - blender
13
+ - procedural-generation
14
+ - physics-simulation
15
+ - 4d-generation
16
+ - code-generation
17
+ pretty_name: Code4D Benchmark
18
+ size_categories:
19
+ - n<1K
20
+ ---
21
+
22
+ # Dataset Card for Code4D (Code2Worlds)
23
+
24
+ ## Dataset Description
25
+
26
+ - **Paper:** [Code2Worlds: Empowering Coding LLMs for 4D World Generation](https://arxiv.org/abs/2602.11757)
27
+ - **Repository:** [GitHub](https://github.com/AIGeeksGroup/Code2Worlds)
28
+
29
+ ### Dataset Summary
30
+
31
+ The **Code4D** benchmark is a dataset designed to evaluate the capability of Large Language Models (LLMs) in generating physically grounded 4D environments. It pairs natural language prompts with complex 3D scenes (provided here as `.blend` files) that exhibit temporal evolution, physical interactions, and atmospheric changes.
32
+
33
+ Unlike existing text-to-3D datasets that focus solely on static structures, Code4D challenges models on dynamic fidelity, including fluid dynamics, particle systems, rigid-body dynamics, and soft-body simulations.
34
+
35
+ This dataset supports the **Code2Worlds** framework, which formulates 4D generation as language-to-simulation code generation using a dual-stream architecture (Object Stream and Scene Stream).
36
+
37
+ ### Supported Tasks and Leaderboards
38
+
39
+ - **Text-to-4D Scene Generation:** Generating dynamic 3D scenes from text descriptions.
40
+ - **Procedural Code Generation:** Evaluating LLMs on generating Blender/Infinigen API calls.
41
+ - **Physics Simulation Benchmarking:** Assessing the realism of generated physical interactions.
42
+
43
+ ### Languages
44
+
45
+ The prompts and documentation are in **English**.
46
+
47
+ ---
48
+
49
+ ## Dataset Structure
50
+
51
+ ### Data Instances
52
+
53
+ Each instance in the dataset consists of a text prompt and its corresponding Blender project file (`.blend`).
54
+
55
+ **Example:**
56
+
57
+ * **Prompt:** "A breeze stirs through the autumn forest, gently swaying the entire tree as leaves dance in the wind."
58
+ * **File:** `scene_1.blend`
59
+
60
+ ### Data Fields
61
+
62
+ - `prompt` (string): The natural language instruction describing the scene and desired dynamics.
63
+ - `blend_file` (file): The Blender 3D project file containing the scene layout, assets, and simulation settings.
64
+ ---
65
+
66
+ ## Dataset Creation
67
+
68
+ ### Curation Rationale
69
+
70
+ The dataset was constructed to address the "semantic-physical execution gap" in generative models. It specifically targets scenarios where monolithic generation fails, requiring precise control over both local object structures and global environmental layouts.
71
+
72
+ ---
73
+
74
+ ## Considerations for Using the Data
75
+
76
+ ### Software Dependencies
77
+
78
+ To open and render the `.blend` files properly, you need:
79
+ - **Blender 4.3** or higher.
80
+ - **Infinigen** libraries.
81
+
82
+ ### Computational Requirements
83
+
84
+ The benchmark scenes are designed for high-fidelity rendering.
85
+ - **Nature Scenes:** Configured for 1920x1080 resolution, 240 frames, 128 samples.
86
+ - **Indoor Scenes:** Configured for 1920x1080 resolution, 120 frames, 196 samples.
87
+
88
+ ---
89
+
90
+ ## Citation
91
+
92
+ If you use this dataset in your research, please cite the following paper:
93
+
94
+ ```bibtex
95
+ @article{zhang2026code2worlds,
96
+ title={Code2Worlds: Empowering Coding LLMs for 4D World Generation},
97
+ author={Zhang, Yi and Wang, Yunshuang and Zhang, Zeyu and Tang, Hao},
98
+ journal={arXiv preprint arXiv:2602.11757},
99
+ year={2026}
100
+ }